Nearly ideal weather with mostly dry conditions and moderate temperatures has prevailed over south Florida for the past three weeks. With the exception of FAWN weather station at Fort Pierce, which received just over an inch of precipitation for the period, other locations across south Florida saw only a trace of rain. Temperatures have been seasonable with daytime highs low 80’s and nighttime lows in 50’s and 60’s.

Several mornings have seen patchy fog and heavy dews which has helped keep bacterial spot infections active in some places. Fog has been moderate to heavy depending on the location. For the most part however improved weather conditions has aided growers by improving fruit set and minimizing disease problems.

Reports indicate that crops across the area are in fair to mostly good condition. Although most harvesting paused for Thanksgiving Day, picking continues to increase as more acreage reaches maturity. Quality is fair to good for first picks and good for second and third picks. Growers continue to level land, and lay plastic. Workers are irrigating, spraying, staking, pruning and tying as needed.

Vegetable crops available include bell peppers, cucumbers, eggplant, hot peppers, okra, tomatoes, snap beans, specialty vegetables, squash, and sweet corn. Okra harvest in Dade is winding down with some producers finished.

<table>
<thead>
<tr>
<th>FAWN Weather Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ft Lauderdale</td>
</tr>
<tr>
<td>11/9-11/30/01</td>
</tr>
<tr>
<td>Fort Pierce</td>
</tr>
<tr>
<td>11/9-11/30/01</td>
</tr>
<tr>
<td>Homestead</td>
</tr>
<tr>
<td>11/9-11/30/01</td>
</tr>
<tr>
<td>Immokalee</td>
</tr>
<tr>
<td>11/9-11/30/01</td>
</tr>
</tbody>
</table>
Forecast from the National Weather Service in Miami calls for cool dry conditions and sunny skies to persist through the end of the week. Daytime temperatures will remain in the 70’s and 80’s with nighttime lows in the 50’s and 60’s. Mostly sunny skies will give way to partial cloud cover and patchy late night and early morning fog can be expected across the area as we move into next week. For additional information, visit the National Weather Service in Miami website at http://www.srh.noaa.gov/mia/newpage/cgi-bin/master.pl?suite=home

While scouts in Palm Beach indicate that worm pressure has begun to ease compared to earlier reports, respondents in southwest Florida have indicated that the worms just won’t quit.

Some growers in Palm Beach are reporting that they are seeing the reappearance of small (first and second instar) fall armyworm in pepper.

Around Immokalee, scouts have been finding high numbers of southern armyworm egg masses and new hatches in tomato, pepper, potato and eggplants. Several have indicated that pressure is higher than normal for this time of year.

There are reports of random scattered occurrence of low levels of pinworms on mature tomato plants from Martin and St Lucie counties.

The UF/IFAS research stations in Belle Glade and Immokalee and growers in the Devils garden area continue to report heavy pressure from fall armyworm on sweet corn. Trap counts at the UF/IFAS Everglades Research Station were very high on the last posted date available, November 15, 2001 – the average count for three traps was 398 moths. Trap data can be seen at http://erec.ifas.ufl.edu/PD/EPHTRDA.HTM.

In south Florida, fall armyworms are year round pests of sweet corn and peppers, while southern and beet armyworms cause most damage on peppers, tomatoes and leafy vegetables. These pests are active year round in our area and serve as a reservoir for migration into north Florida and further into the southeastern United States. Corn earworms are also pests of sweet corn, but fall armyworms are much more common and important sweet corn pests in the EAA.

Respondents in southwest Florida continue to report finding both melonworm and pickleworms on cucurbits. Most reports indicate that pressure appears to be easing somewhat.

The melonworm (Diaphania hyalinata L) occurs throughout most of Central and South America and the Caribbean. The United States is the northern limit of its permanent range, and wintertime occurrence generally is limited to south Florida and perhaps south Texas. The melonworm can complete its life cycle in about 30 days. It is present throughout the year in southern Florida, where it is limited mostly by availability of host plants. Melonworm disperses northward annually

Melonworm moths deposit oval, flattened eggs in small clusters; averaging two to six eggs per egg mass. They are deposited at night on buds, stems, and the underside of leaves. Initially they are white or greenish, but soon become yellow in color.

There are five instars. Newly hatch larvae are colorless, but by the second instar larvae assume a pale yellow-green color. They construct a loose silken structure under leaves, which shelters them during the daylight hours. In the fifth instar, larvae have two subdorsal white stripes extending the length of the body. The stripes fade just prior to pupation, but they are the most distinctive characteristic of the larvae.

The moth’s wingspan is about 2.5 cm. The wings are pearly white centrally, and slightly iridescent, but are edged with a broad band of dark brown. Moths frequently display brushy hairs at the tip of the abdomen when
at rest. Melonworm moths remain in the crop during the daylight hours. While they are generally inactive during the day, they will fly short distances when disturbed.

Melonworm feeds principally on foliage, especially if foliage of a favored host plant such as summer squash is available. Leaf veins are usually left intact, resulting in lace-like plant remains. If the available foliage is exhausted, or the plant is a less preferred species such as cantaloupe, then the larva may feed on the surface of the fruit, or even burrow into the fruit. Growers sometimes refer to these insects as "rindworms" because they cause scars on the surface of melons. In a study of melonworm damage potential to summer squash conducted in south Florida, melonworm caused a 23 % yield loss due to foliage damage (indirect loss) and a 9 to 10% yield reduction due to fruit damage (direct loss).

Among the common natural enemies of melonworm are a number of Braconidae, Ichneumonidae, and Trichogrammatidae wasps as well as several species of Tachinidae flies. Studies conducted in Puerto Rico reported levels of parasitism reaching 24%. Generalist predators such the soldier beetle and the red imported fire ant have also been reported to be mortality factors.

Pheromone production by female moths peaks about sunset. The sex pheromone has been identified but is not available commercially. Moths are not attracted to light traps. Therefore, checking plants for early stages of leaf damage and the presence of larvae are the most effective ways to monitor crops.

In conventional vegetable production areas, it is treated as only a minor pest. Historically, melonworm was considered to be a very damaging pest, but since it feeds mainly on foliage it is easy to control with a variety of insecticides. In organic production and in home gardens, melonworm can cause serious damage.

Pollinators, particularly bees, are very important in cucurbit production, and insecticide application can interfere with pollination by killing honeybees. If insecticides are to be applied when blossoms are present, it is advisable to use insecticides with little residual activity, and to apply insecticides late in the day, when bee activity is minimal.

In addition to chemical insecticides, Bacillus thuringiensis is commonly recommended for suppression. The entomopathogenic nematode Steinernema carpocapsae provides only moderate suppression because the nematodes do not survive long on the foliage, where larvae are found resting and feeding.

Since melonworm prefers squash to most other cucurbits, trap cropping has been suggested, and of course destruction of crop residue, which may contain melonworm pupae, is recommended.

More information on melonworms can be found on the UF/IFAS Department of Entomology and Nematology’s Featured Creatures website at http://www.ifas.ufl.edu/~insect/veg/leaf/melonworm.htm

Leafminer activity continues to increase seasonally across South Florida.

In the Delray Beach/Boynton Beach area, leafminers are in “full force” on both young and old plantings of tomatoes, eggplant, beans, and pepper and sprays are being targeted for control. In other places, leafminer presence is relative light but on the increase in medium sized pepper plants.

Around southwest Florida, reports indicate that leafminer pressure is variable. In some areas pressure is quite high and growers have sprayed several times for control. In other areas pressure is fairly light although most tomato fields have been treated for leafminer at least once. Leafminers are also being seen at lower levels in other crops such as pepper, cucurbits and beans. Heavy leafmining damage can reduce photosynthesis and cause leaf desiccation and abscission.
Regularly check crops for stippled leaves and leaf mines. Adult females use their ovipositor to tear holes (stipples) in upper leaf surface for feeding and laying eggs. Most mines occur on older bottom leaves. If leafminer populations build to high levels, a chemical treatment may be necessary. Action thresholds for tomato given in the Florida Tomato Scouting Guide are 0.7 larva/plant from the 0-2 true leaf stage and above the two true leaf stage 0.7 larva/3 terminal leaflets. Growers should avoid the use of harsh chemicals to control other insects if possible to help preserve beneficial populations.

Growers have obtained good results with abamectin (Agri-Mek), cyromazine (Tri-gard) - peppers, spinosad (Spintor) and azadirachtin (Neemix). These materials are relatively soft on beneficials. There are a number of other labeled materials that will give good control.

A number of natural enemies, primarily parasitic wasps, often control leafminers. If these parasites are killed by pesticides leafminer outbreaks may become more severe.

Several scouts have expressed concern about some grower’s over-reliance on Spintor in leafminer maintenance programs. Growers are advised to practice resistance management and avoid repeated back-to-back applications of all pesticides.

Aphid populations appear to be on the increase although numbers remain moderately low in most places.

Reports from east coast growing areas indicate that flights of winged aphids are still being observed. A few scattered colonies of aphids are beginning to appear on pepper, Chinese cabbage and some herbs. In general populations remain relatively low.

Around southwest Florida, winged aphids are becoming more common in many crops. These are typically first observed in the upper foliage of crops. Colony formation has been noted in pepper, tomato, eggplant and cabbage.

Pepper weevils infestations continue to spread. Several growers on both coasts are reporting light infestations from scattered locations. In some places there are reports of hotspots with moderate to high numbers being detected in fallen fruit.

Fallen fruit should be checked to determine if weevils are responsible. Infested fruits can be recognized before they fall by the yellow calyx the presence of oviposition punctures that look like small dimples.

Many growers have indicated disappointing results in obtaining satisfactory control in the field. Spraying needs to commence at the first sign of weevils or with flowering in fields with a history of problems. Once weevils begin to enter fruit control becomes more difficult. Pheromone traps made by Trece are a good way to detect populations early.

Vydate has been the standard control and has given pretty good results even at 2 pts/acre when sprayed weekly in Phil Stansly’s trials at the Southwest Florida Research and Education Center. A total of 24 pts can be applied for the season.

A number of growers have indicated obtaining good results in controlling weevils with either Capture or cryolite. Some growers indicate using one or more of the synthetic pyrethroids for control of adults.

Actara, a newly labeled nicotinoid insecticide from Syngenta has also demonstrated good control in trials, but growers are limited to 2 applications season. Timing of usage for best results remains to be determined. All currently labeled materials are difficult to work into an IPM program once plantings begin to be harvested due to the 7 day PHI in force for all of them.
Very low numbers of Florida flower thrips (*Frankliniella bispinosa*) are being found in pepper and eggplant blooms across south Florida. At this time, pressure is light and generally not considered to be a problem.

One report out of Palm Beach indicates finding very low numbers of *Thrips palmi* in pepper. In this location, low numbers of other species had been found in blooms, but they greatly outnumbered *palmi*. Spintor was applied and scouting reports now indicate that very few thrips of any kind are being found.

Silverleaf whitefly populations are beginning to increase seasonally in older tomato fields that are being harvested. Most reports indicate that numbers relatively low about what would be expected at this time. Growers are encouraged to begin watching populations more closely as crops begin to mature and as the control from early season applications of Admire and Platinum begins to diminish with time.

Some exceptions have been reported, with some fields around Immokalee experiencing heavy whitefly pressure. In some cases 30 or more adult whiteflies per plant have been noted with lots of eggs, nymphs and pupae as well. Incidence of tomato yellow leaf curl virus has increased dramatically in these fields.

As control with soil-applied nicotinoids diminishes growers should begin to use other products of other chemical classes for control. Choices would include products such as Thiodan, soaps and the insect growth regulators Knack® or Applaud®.

Growers are also reminded of the importance of sanitation and rapid destruction of crop residues once harvest is complete.

Respondents in Palm Beach indicate that broadmites are mostly under control. Incidence is down in younger pepper and eggplant. There are reports of broadmites being found in older basil plantings. Medium aged leaves in the tops of plants have an “old drawn out appearance.”

Around Immokalee, broadmites continue to be patchy with flair ups occurring here and there. Broadmites have been noted in both pepper and eggplant.

Broad mites (*Polyphagotarsonemus latus*) are so small that they are may be hard to see even with a good hand lens. Broad mite adults are tiny, white, eight-legged mites and are usually most numerous on the underside of young, emergent foliage.

Female broad mites lay 30 to 76 eggs on the leaf surface over an 8- to 13-day oviposition period. Unmated females lay male eggs; mated females usually lay four female eggs for every male egg. The larvae hatch in 2 or 3 days and emerge from the egg to feed. Larvae are slow moving and do not disperse far. In 2 or 3 days, the larvae develop into a quiescent larval stage. Quiescent female larvae become attractive to the males, which pick them up and carry them to the new foliage. Males and females are very active, but the males apparently account for much of the dispersal of a broad mite population in their frenzy to carry the quiescent female larvae to new leaves. When females emerge from the quiescent stage, males immediately mate with them. Males live 5 to 9 days; females live 8 to 13 days. Males can sometimes be seen carrying females "piggyback". Nymphs are similar though somewhat smaller than adults. Eggs are about ¼ the size of adults, round with white, opalescent spots and glued to the plant surface. Generation time may be as short as eight days, depending on temperature.

Some research indicates that broad mites are carried on the legs of white flies and other insects. This transport mechanism, known as phoresy, may play a very important role in dispersal.

Symptoms of broad mite feeding include distortion of plants growth causing leaves to become thickened and narrow resulting in a “strappy” appearance. Leaves curl downward and may turn coppery or purplish. Internodes shorten and lateral buds break more than normal. Mites tend to crowd into crevices and buds and
feed on the growing tips. This new growth may also be stunted or killed which forces out additional shoots. Flowers are distorted and fail to open normally.

Heavy feeding can cause flower abortion and russetting of fruit. Unless controlled, broad mites can destroy the commercial value of infested crops. Their toxic saliva causes twisted hardened and distorted growth in the terminal of the plant. The effects of their feeding may persist long after the mites have been eradicated.

Infestations are often spotty, but may become more generalized, especially in late fall. Chemical control is not difficult but should be timely.

Growers have reported good control with a number of products including micronized sulfur (i.e. Thiolux), Agrimek, Kelthane or dicofoil and oil. Some respondents have indicated success, using Trilogy to control broadmites. It should be noted that none of these materials kills eggs or seems to have enough residual to kill all hatching larvae. Therefore, to achieve control it is necessary to make two applications about 5 days apart to allow time for eggs to hatch and target emerging larvae.

There has been a report from Palm Beach regarding squash bugs showing up on squash. Left uncontrolled these insects can destroy plants by sucking sap from leaves.

From most reports, disease incidence and occurrence is generally low across the region.

Bacterial spot infections have been moving with the occurrence of heavy dews and wet foggy nights and mornings. Harvest and cultural operations are also contributing to the spread in some places. In general bacteria is more of a problem in tomato.

Reports from Palm Beach indicate bacterial spot continues to increase on both pepper and tomato. Reports indicate greater incidence on tomato with many pepper fields relatively free of bacteria although there are scattered light infections being detected on pepper. Specialty producers indicate some older tomato varieties especially the indeterminate types with heavy foliage have particularly hard hit.

Around Immokalee and Naples, bacterial infections are slowly progressing on infected tomato plants yellowing out the lower foliage and slowly moving higher in the canopy. On older pepper that was severely infected a few weeks ago when conditions where wetter, new foliage looks relatively clean.

Around Immokalee, growers are beginning to see low levels of early blight and target spot on tomato. In a number of cases early blight lesions can be seen starting on leaf tissue previously damaged by leafminer activity or bacterial spot infections.

Dr Ken Pernezny reports seeing some serious target spot infections on tomato in a couple of locations around Palm Beach.

Remember that tank-mix sprays of copper fungicides and maneb do not provide acceptable levels of target spot control. In the past, several outbreaks of target spot of tomato have been correlated with frequent use of copper/maneb tank-mixes, primarily for bacterial spot control, to the almost total exclusion of other fungicides. Correct diagnosis of the cause of tomato foliar lesions obviously is needed if proper fungicide choices are to be made.

Reports from Palm Beach indicate Phytophthora on pepper and eggplant has stabilized with young infections being held under control and recently set transplants remaining free of the disease.
Reports from Palm Beach indicate that Pythium still showing up on newly set pepper transplants. Pythium is also being seen on direct seeded squash in the Devil’s Garden area.

Reports of powdery mildew on squash have come in from both coasts. Powdery mildew is widespread in older cucurbits especially squash. Incidence and severity is generally low to moderate although some severe infections have been noted.

We have received the first report of the season from Palm Beach for powdery mildew on eggplant. Infection is on mature plants and sprays have been targeted for control. In addition to reducing plant vigor from leaf infection, mildew can attack the calyx and reduce the marketability of fruit.

Powdery mildew is a serious disease of beans, southern peas, okra, squash, cucumbers, muskmelons, honeydews, and pumpkins in Florida. The disease occurs also on English peas and is found on strawberries and watermelons in the state. Powdery mildew of okra, squash, cucumbers, muskmelons, honeydews, pumpkins, and watermelons is caused by the fungus Sphaerotheca fulginea or, occasionally, Erysiphe cichoracearum. The fungus Erysiphe polygoni causes powdery mildew of beans, southern peas, and English peas. Powdery mildew of strawberries is caused by the fungus Sphaerotheca macularis.

The disease is found mainly on the older leaves and stems of plants. Yields of many of the infected vegetables are reduced due to pre-mature foliage loss. In honeydew and muskmelon severe leaf infection usually results in lower fruit sugar content and subsequent reduction of fruit quality. In a few crops direct damage to the marketable produce occurs.

The fungus is usually first noted as subtle, small, round, whitish or yellow spots on leaves and sometimes stems. The spots enlarge and coalesce rapidly and a white mass resembling talcum powder becomes evident on the upper surface of older leaves or other plant parts. Young leaves are almost immune. A large part of the talc-like powder on the leaf surface is composed of spores. These spores are easily blown by winds to nearby susceptible plants. Heavily infected leaves yellow and then become dry and brown. Extensive premature defoliation of the older leaves can ensue if the disease is not controlled. Yield reduction from defoliation is proportional to the severity and length of time plants are infected. Severe economic losses can occur in beans when pods are infected. The pods develop purplish spots and become distorted.

Powdery mildew fungi can reproduce under relatively dry conditions. Increased humidity can increase the severity of the disease, and infection is enhanced during periods of heavy dew. Unlike downy mildew, powdery mildew can and does become severe during periods of low rainfall in the winter and spring months in Florida.

It is not known for certain how the fungus survives between crop seasons. The fungus is thought to survive on wild cucurbit and other weeds year round.

Crop rotation and many other cultural practices seem to have little effect on the incidence and development of powdery mildew. However, healthy, vigorous leaves and stems are less prone to infection. Plants under nutritional stress in most cases will develop powdery mildew much sooner than plants the same age grown under a good nutritional program.

Tolerance or resistance to powdery mildew is available in some vegetable crops. For example, most commercial varieties of slicing and pickling cucumber varieties grown in Florida have acceptable levels of resistance.

Most varieties of cantaloupe used in Florida, have some tolerance to powdery mildew. Tolerance to powdery mildew is available in a few of the most recently introduced summer squash and zucchini varieties. It is expected that most newly released cultivars will have some level of tolerance to powdery mildew often combined with an array of virus resistance.
In addition to resistance, economic control can be achieved with chemicals. Under low disease pressure, some materials applied for downy mildew control may give satisfactory control of powdery mildew. However, under moderate to heavy mildew disease pressure, sulfur and the strobilurin fungicides such as Flint, Nova and Quadris are recommended. When using strobilurin fungicides be sure to practice resistance management and avoid consecutive applications.

In southwest Florida, downy mildew and powdery mildew is widespread on squash.

Growers on both coasts are reporting “mosaic” on squash. In general incidence and severity is low although some exceptions with higher levels have been noted around southwest Florida.

Respondents on both coasts continue to report finding tomato yellow leaf curl virus in a few widely scattered tomato plants. Incidence is low although most reports indicate a gradual increase in the number of infected plants as the season progresses. In most cases incidence remains fairly low with only an occasional infected plant every few of acres present. On report out of Immokalee has indicated seeing an explosive increase in the number of infected plants in a field where whitefly numbers have increased greatly.

Growers should be prepared to use alternative whitefly control measures including IGR’s as Admire begins to wear off and whitefly populations increase. Growers should rogue out infected plants as identified. It is disturbing to see some fairly large infected plants in fields that have apparently been left in place for several weeks or more. A complete IPM approach including sanitation, eradication (roguing) and chemical control of the whitefly vector is essential in controlling this disease.

Scattered reports of gummy stem blight on cucurbits have been received from respondents in southwest Florida.

As reported in the last hotline symptoms consistent with an infection typical of a member of the tobamovirus group, which includes tobacco mosaic virus (TMV) and tomato mosaic virus (ToMV), were observed in several commercial tomato fields in south Florida in late October and early November. A mild light and dark green mosaic or mottle was generally present on leaves, frequently accompanied by slight distortion (puckering). In a few instances, a distinct yellow mottle was observed on leaves. Symptoms were generally most noticeable on new growth. Plants affected at an early age were stunted.

Reports indicate that these infections are associated with infected seed lots. Growers have indicated that infections have tended to occur in isolated patches and have initially not displayed the linear spread often associated with mechanical transmission.

Information received from Seminis indicates that they have identified infected seed of FL 91. It includes several batch #’s but is a sublot of a single lot of seed. Seminis has been in contact with growers who have observed symptoms and a letter has been sent to affected parties. See text below:

Regarding: Tomato Florida 91
Date: October 18, 2001

Dear:

We want to advise you of a potential seed borne Tobamo Virus problem with the following Tomato Florida 91 Lots and Batches:

Lot 155008
Batches 468903, 468924, 471777, 468894, 468913, 463427
This came to our attention in a Tomato crop produced in Virginia where late in the season, a light infection occurred that did minimal or no damage to the crop. Subsequent to this the seed was tested in our pathology lab and found to carry the virus. Concurrent with the test results, we were recently made aware of the presence of this virus in a Florida crop grown from one of the batches listed.

Please be alert for virus symptoms as this virus can be spread mechanically. We urge caution in handling the plants and subsequent movement of people or equipment through affected areas to prevent spreading the disease.

A local representative will be contacting you regarding this and to exchange any of this seed remaining in your inventory.

In the meantime, if you have any questions concerning this, please feel free to contact Pieter Vandenberg (805-918-2206) or Steve Coffey (386-801-5083).

We regret this problem and have taken steps to prevent reoccurrence in the future, but wanted to alert you so you can take precautionary steps if needed to prevent spread of the virus.

University of Florida and USDA scientists have posted information and photographs on a tobamavirus, which includes tobacco mosaic virus (TMV) and tomato mosaic virus (ToMV), on the Florida Pest Alert WWW site at http://extlab7.entnem.ufl.edu/PestAlert/. Additional information on these viruses can be found at http://image.fs.uidaho.edu/vide/descr803.htm and http://image.fs.uidaho.edu/vide/descr832.htm.

Around Immokalee, fusarium crown rot starting to wilt down tomato plants in plants in blocks with a history of the disease but reports indicate that it not as bad in years past. There are also some isolated reports of an occasional wilted tomato plant with symptoms indicative of southern blight.

Reports from the Devils Garden area indicate the sporadic occurrence of Alternaria on beans. This is a moderate-to-cool weather disease. These disease often manifests itself as a rather nasty pinhead-sized lesion on the pods that throws the beans out of grade - at least when the price is at or below average. Seen through a hand lens, the lesions are somewhat raised, looking kind of like a mini volcano. Pods are most likely to become infected when they are very small. Bravo does a good job on Alternaria; Tospin -M or similar products does not. If growers miss critical Bravo sprays at pin pod stage, they can get into serious Alternaria problems.

Business Opportunity

Wholesale grower of edible flowers in Niagara Falls, Ontario, Canada, is looking for a wholesale grower in Florida (preferably in the Ft. Myers area) to be able to purchase and ship edible flowers to Canada during the months of November to February. Telephone 905-354-9800 or E-mail sunsprout@sympatico.ca.

Up Coming Meetings

Southwest Florida

December 4, 2001

Vegetable Growers Meeting - Fundamentals of Irrigation, Southwest Florida Mobile Irrigation Lab and Roundup Herbicide Formulations and Vegetable Application Updates. 6:00 – 8:00 PM

UF/IFAS - SW Florida Research and Education Center

Hwy 29 N, Immokalee, FL

Contact Gene McAvoy 863-674-4092
December 12, 2001

Fall Vegetable Field Day - 10:00 AM – Noon

UF/IFAS - SW Florida Research and Education Center
Hwy 29 N, Immokalee, FL
Contact Gene McAvoy 863-674-4092

Other Meetings

December 8-12, 2002

Cucurbitaceae 2002

Naples Beach and Golf Club, Naples, Florida
Contact Don Maynard at 941-751-7636 ext 239 or dnma@mail.ifas.ufl.edu.

Tough Border Rules May Limit Florida Pickers

After September 11th, heightened security along the borders has reduced immigrant's attempts to cross the border into the U.S. If there is a shortage of farm workers this year, it may be felt hardest in December and January when oranges, strawberries and tomatoes are ready to harvest.

Florida Citrus Mutual, a citrus grower organization, estimates 90 percent of Florida's agricultural workers are in the country illegally, primarily Mexican workers. According to the U.S. Immigration and Naturalization Service, 54 percent fewer people were caught trying to enter the country illegally across the Mexican border in October, compared to last year.

"We're operating at a higher degree of scrutiny," said Russ Bergeron, an INS spokesman. "The smuggling organizations are aware of it, and they realize that it's harder to cross. So they aren't trying it."

The U.S. Department of Agriculture says an average of 60,000 Florida farm workers are illegal; while the Florida Fruit & Vegetable Association says more than 125,000 are working here. The University of Florida's Shimberg Center for Affordable Housing survey says there are 233,000, while the Florida Farmworker Association says there are 400,000.

Sunday Morning E-News for Hendry, Glades and western Palm Beach County
November 25, 2001

House Approves $1.19 Billion in Cuts

A $3.5 million cut in the $27 million program that provides reimbursements to homeowners who lost citrus trees due to canker eradication programs run by the state. The House shifted the $3.5 million to restore some of the cuts proposed for the Institute of Food and Agricultural Sciences and to save regional Department of Agriculture offices.

Lakeland Ledger
11/30/01

Websites

The UF/IFAS North Florida Research & Education Center in Live Oak has posted a great website that has links to a number of topics of interest to conventional and organic vegetable growers. Set your browser to http://nfrec-sv.ifas.ufl.edu/

Yields of Vegetables - Average yields of vegetables are of interest to growers, Extension agents, regulatory agencies, and others. They may be used to compare crop performance on an individual farm with the state average; as one basis for selecting alternative crops for a farm; or for settlement of claims resulting from natural
Thank god, I'm a country boy...

What is the difference between country people and our city counterparts?

A country resident drives a battered pickup truck laden with an assortment of ever-useful tools.

A city resident drives a brand-new leased Jeep Grande Cherokee, which they'd never think to take off a paved road for fear it'd get dirty.

A country resident never hesitates to knock on their neighbor’s door - if only for a coffee and a friendly chat.

A city resident never answers their door fearing it could reveal:

1. someone who'll try to convert them to a little-understood religion;
2. neighbors seeking a charitable donation;
3. a gang of ruthless home invaders.

A country person stops for anyone who's stranded beside a broken-down vehicle and provides a lift to the nearest service station (Believe it or not, service stations do still indeed exist - but mainly in the country).

A city person slows down, locks the car doors and makes hand-signals to the stranded motorist that he'll use a cell phone to call a tow truck.

A city dweller spends $1,500 to install a state-of-the art home security system and another $25 a month to have it monitored by a company 24 hours a day.

A country resident buys a dog - or gets one free from a neighbor who's more than thankful to part with one of eight new pups.

Country people personally know each person from every family who lives within a 500 sq. km area.

City folks don't know the person across the street - and probably think they're a little weird anyway.

Quotable Quotes

A magician pulls rabbits out of hats. An experimental psychologist pulls habits out of rats. -- Anonymous

The two most abundant things in the universe are Hydrogen and stupidity. -- Harlan Ellison

An honest politician is one who, when he is bought, will stay bought. -- Simon Cameron
Humanity has advanced, when it has advanced, not because it has been sober, responsible, and cautious, but because it has been playful, rebellious, and immature. -- Tom Robbins

Blessed is he who expects nothing, for he shall never be disappointed. -- Jonathan Swift

When we remember we are all mad, the mysteries disappear and life stands explained. -- Mark Twain

Southwest Florida Vegetable Pest and Disease Hotline is now the South Florida Vegetable Pest and Disease Hotline

You may have noticed that the name of the hotline has changed to the South Florida Vegetable Pest and Disease Hotline. In response to numerous requests from readers and in an effort to better serve growers and the vegetable industry, we are expanding coverage of the hotline to include southwest Florida and eastern Palm Beach County. Comments and suggestions are appreciated. Let us know what you think.

Contributors include: Joel Allingham/AgriCare, Inc, Karen Armbrester/SWFREC, Jim Connor/SWFREC, Bruce Corbitt/West Coast Tomato Growers, Fred Heald/Farmers Supply, Sarah Hornsby/AgCropCon, Cecil Howell/H&R Farm, Bruce Johnson/General Crop Management, Leon Lucas/Head Crop Care, Gene McAvoy/Hendry County Extension, Alice McGhee/Thomas Produce, Jimmy Morales/Pro Source One, Tim Nychk/Nychk Bros. Farm, Chuck Obern/C+B Farm, Dr Ken Pernezny/EREc, Dr. Pam Roberts/SWFREC, Nancy Roe/Farming Systems Research, Wes Roan/6 L's, Kevin Seitzinger/Gargiulo, Jay Shivler/ F& F Farm, Ken Shuler/Palm Beach County Extension, Ben Stanaland/Pacific Tomato Growers, John Stanford/LNA Farm, Mike Stanford/MED Farms, Dr. Phil Stansly/SWFREC, Eugene Tolar/Red Star Farms, Dr.Charlie Vavrina/SWFREC, Donna Verbeck/GulfCoast Ag. and Mark Verbeck/Bayer Crop Protection.

The South Florida Pest and Disease Hotline is compiled by Gene McAvoy and is issued on a biweekly basis by the Hendry County Cooperative Extension Office as a service to the vegetable industry.

Gene McAvoy
Extension Agent II
Vegetable/Ornamental Horticulture 863-674-4092 phone
Hendry County Extension Office 941-860-8811 mobile - Nextel Agnet 28950
PO Box 68 863-674-4097 fax
LaBelle, Florida 33975 gmcavoy@gnv.ifas.ufl.edu

http://www.ifas.ufl.edu/~gmcavoy/index.htm

Ken Shuler
Extension Agent IV
Vegetables
Palm Beach County Extension
559 N Military Trail 561-233-1718 phone
West Palm Beach, Florida 33415-1311 kds@gnv.ifas.ufl.edu
Special Thanks to the generous support of our sponsors; who make this publication possible.

Thomas Produce Company
Of South Florida
Grower and Shippers of Quality Vegetables
9905 Clint Moore Road
Boca Raton, Florida 33496

LaBelle Plant World, Inc.
Tommy Smith: President
Scott Smith: Vice President
We Grow Plants for the Pros
LaBelle, Florida Phone 863-675-2020

Gargiulo
Growers Shippers Importers Exporters
David Pensabene: Production Manager
Naples Operations
Phone 941-353-0300 Fax 941-353-3407

KeyPlex
PO Box 11094
Naples, FL 34101
Phone 941-910-4837 Fax 941-514-0168

AGTROL International
6943 Scarboro Drive
Fort Myers, Florida 33919
Phone 941-437-9970 Fax 941-437-2646

Florida Favorite Fertilizer
787 Overriver Drive
North Fort Myers, Florida 33903
Phone 800-457-0807 Cell 941-707-2272

Farmers Supply Inc
710 Broward Street
Immokalee, FL 34142
Phone 941-657-8254 Fax 941-657-2005

Harris Moran Seed
1923 Indian Creek Drive
Fort Myers, Florida 33917
Phone 941- 370-5893 Fax 941-543-7003

AGTROL International
6943 Scarboro Drive
Fort Myers, Florida 33919
Phone 941-437-9970 Fax 941-437-2646

Dupont Agricultural Products
5100 South Cleveland Avenue
Fort Myers, Florida 33907
Phone 941-332-1467 Mobile 941-994-8594

Griffin LLC
13171 Lake Meadow Drive
Fort Myers, Florida 33913
Phone 941-274-3102 Fax 941-274-6663

AGTROL International
6943 Scarboro Drive
Fort Myers, Florida 33919
Phone 941-437-9970 Fax 941-437-2646

Griffin LLC
13171 Lake Meadow Drive
Fort Myers, Florida 33913
Phone 941-274-3102 Fax 941-274-6663
Special Thanks to the generous support of our sponsors; who make this publication possible.

Ted and Trudy Winsberg
Green Cay Farms, Inc.
Rt. 1, Box 331B
Boynton Beach, Florida 33437-9727
Phone 561-499-5345

Donna Muir Strickland
Monsanto Crop Protection
PO Box 1723
LaBelle, Florida 33975
Phone 863-675-4250

Glades Crop Care, Inc.
Leaders in Crop Health Management
Charlie Mellinger, Ph.D.
Phone 561-746-3740
Fax 561-746-3775

Bayer Crop Protection
20750 N River Road
Alva, Florida 33920
Phone 941-728-8847
Cell 941-707-0880

Glen Kaufman
Paramount Seeds, Inc.
PO Box 1866
Palm City, Florida 34991
Phone 561-221-0653
Fax 561-221-0102

Manatee Fruit Company
PO Box 128
Palmetto, Florida 34220-0128
Phone 941-722-3279
Fax 941-729-5151

Robert F. Gregg
Syngenta Crop Protection
11051 Championship Drive
Fort Myers, FL 33913
Office 941-561-8568
Fax 941-561-8569

CERTIS USA
Dr. Adam Muckenfuss 561-781-2233
Sales: Joe Craig 941-965-1145
Ed Dickenson 941-318-9004
Javelin® Agree® Trilogy® Neemix®

AgriEnergy Resources
Sam Hipp
21417 1950 E St., Princeton IL 61356
Phone 954-563-8753
Fax 815-872-1928
http://www.agrienergy.net

DIAMOND R FERTILIZER
1155 Commerce Drive
LaBelle, Florida 33935
Phone 863-675-3700
Cell 941-851-0613
Special Thanks to the generous support of our sponsors; who make this publication possible.

Matt Arnold
Royster Clark Fertilizer
880 Prairie Mine Road
Mulberry, Florida 33860
Cell 941-842-1536 Office 800-633-6801

Sim Nifong
Dow AgroSciences LLC
292 Lake Pearl Drive
Lake Placid, Florida 33852
Phone 863-699-9150 Cell 941-745-0237

Sarah Hornsby, CCA
Agricultural Crop Consulting, Inc
Scouting: Manatee, Hillsborough, Collier
Office/Fax 941-776-1122
Cell 941-713-6116
Email: AgCropCon@aol.com

Mr and Mrs Raymond Cordell
410 Via Esplande
Punta Gorda, Florida 33950

Bobbit Jenkins
BASF Corporation
11100 Lakeland Circle
Fort Myers, Florida 33913
Office 941-561-2812 Fax 941-561-6985
Mobil 941-707-1603

Florida Seed
Hybrid Vegetable Seed
863-602-2008
Tomato Pepper Watermelon

Thad G. Boatwright
Monsanto Crop Protection
1089 Forsythia Lane
West Palm Beach, FL 33415
Office 561-478-4970 Fax 561-478-4970
Cell 561-719-6820

Chuck Elam
Florida Seed
863-602-2008
Tomato Pepper Watermelon

Justin Cain
Chemical Dynamics
PO Box 486
Plant City, Florida 33564-0486
Office 813-752-4950 Fax 863-638-1383
Mobil 863-581-0431

PUT YOUR NAME HERE
If you would like to help sponsor this publication, please contact us, your help is desperately needed!

PUT YOUR NAME HERE
If you would like to help sponsor this publication, please contact us, your help is desperately needed!

NOTE: The acknowledgement of sponsorship in no way constitutes or reflects an official endorsement of these businesses or their products or services by either the University of Florida, IFAS, the Florida Cooperative Extension Service, or the Hendry County Extension Office. Sponsors have no control over the content of this publication.