Unseasonable warm weather and mostly dry has prevailed over south Florida for the past few weeks with temperatures running as much as six to fourteen degrees above average for the period. Sites in Homestead, West Palm Beach and Miami recorded from about a half inch to almost two inches of precipitation while Fort Pierce reported about a third inch. Elsewhere, most localities remained dry with only small amounts of rain reported. Daytime highs have been in the low to mid eighties with nighttime lows mostly in the 60’s.

Although above normal rainfall in 2001 helped alleviate Florida’s three-year drought, warm, dry weather is expected for early 2002. Meteorologists blamed the dry condition mostly on the lack of El Nino, a weather phenomenon in the Pacific Ocean that pushes the jet stream over Florida and usually brings more storms to the state. The weather pattern isn't expected back until July. "For the past three years, it's been abnormally quiet when it comes to severe weather," said Jim Lushine, at the National Weather Service in Miami. "We don't expect to have ... severe weather in the winter and spring." However, a warmer winter doesn't mean the state will be immune to a freeze, Lushine said.

Several growers have commented on the unseasonably warm conditions indicating that in many instances crops are up to two weeks ahead of where they were this time last year. Higher temperatures have also had negative effects on markets as product is still coming in from points north of us with growers as far north as New Jersey still putting produce on the market.

Although patchy fog and heavy morning dew as helped keep bacterial spot infections active in some places, disease pressure has been relatively light according to most respondents. Fog has been moderate to heavy depending on the location.

Reports indicate that crops across the area are in mostly good condition. Growers continue to level land, and lay plastic. Workers are irrigating, spraying, staking, pruning and tying as needed. Producers are picking to satisfy the increased demand caused by the upcoming holidays. Vegetables available include tomatoes, peppers, cucumbers, eggplant, endive, escarole, lettuce, pickles, radishes, snap beans, squash, strawberries and sweet corn.
FAWN Weather Summary

<table>
<thead>
<tr>
<th>Date</th>
<th>Air Temp (°F)</th>
<th>Rainfall (Inches)</th>
<th>Hours Below Certain Temperature (hours)</th>
<th>(hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>40°F</td>
<td>45°F</td>
</tr>
<tr>
<td>Ft Lauderdale</td>
<td>63.5</td>
<td>82.3</td>
<td>0.34</td>
<td>0.0</td>
</tr>
<tr>
<td>Fort Pierce</td>
<td>58.4</td>
<td>81.7</td>
<td>0.31</td>
<td>0.0</td>
</tr>
<tr>
<td>Homestead</td>
<td>59.1</td>
<td>81.9</td>
<td>0.53</td>
<td>0.0</td>
</tr>
<tr>
<td>Immokalee</td>
<td>55.2</td>
<td>85.5</td>
<td>0.10</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Forecast from the National Weather Service in Miami calls for possible showers today and tomorrow as a cold front passes over the area bringing cooler temperatures in it’s wake. Daytime highs through Sunday will be in the mid 70’s with nighttime lows in the mid 50’s. Mostly sunny skies on Wednesday will give way to partial cloud cover later in the week. For additional information, visit the National Weather Service in Miami website at http://www.srh.noaa.gov/mia/newpage/cgi-bin/master.pl?suite=home

Growers and scouts around Immokalee are reporting higher than normal worm pressure for this late in the season quite likely due to the persistence of higher than normal temperatures. Scouts have been finding high numbers of southern armyworm egg masses (up to 2 egg masses per sample) and new hatches in tomato, pepper, potato eggplants and cucurbits.

On the east coast respondents report low to moderate pressure from southern armyworms, beet armyworms, and loopers. No fall armyworms have been reported and only a very few pinworms continue to be found but their occurrence is very rare.

Respondents in southwest Florida continue to report finding both melonworm and pickleworms on cucurbits.

Reports from Palm Beach indicate that leafminer activity continues to increase on a range of crops.

Around southwest Florida, leafminer pressure continues to be variable. In some areas pressure is quite high and growers have sprayed several times for control. In other areas pressure is fairly light although most tomato fields have been treated for leafminer at least once. Leafminers are also being seen at lower levels in other crops such as pepper, cucurbits and beans.

Although leafminer activity has increased over the past few weeks most respondents agree that leafminer pressure is below normal for this time of year.

Natural enemies, primarily parasitic wasps, will often help control leafminers. If these parasites are killed by pesticides leafminer outbreaks may become more severe.

Growers have obtained good results with abamectin (Agri-Mek), cyromazine (Tri-gard) - peppers, spinosad (Spintor) and azadirachtin (Neemix). These materials are relatively soft on beneficials. Although there are a number of other labeled materials that will give good control, growers should avoid the use of harsh chemicals to control other insects if possible to help preserve beneficial populations.

As always, growers are advised to practice resistance management and avoid repeated back-to-back applications of all pesticides.
Reports from respondents in Palm Beach indicate that outbreaks of broadmites are still being found and growers are targeting sprays to control them. In many instances, broadmites are popping up again in older plantings where they had previously occurred. With timely scouting, infestations are being found before major crop damage occurs. In most cases control has been achieved before fruit injury has occurred. In some cases, if fields have already been picked several times, they are not being treated for control.

Around Immokalee, broadmites continue to be patchy with flair ups occurring here and there. Broadmites have been noted in both pepper and eggplant.

Aphid populations appear to be on the increase although numbers remain moderately low in most places.

Reports from east coast growing areas indicate small colonies of aphids have been found to be building up in older plantings, which will be taken out soon. No viruses are being found so they are not considered to be a major problem.

Around southwest Florida, winged aphids are becoming more common in many crops. Colony formation has been noted in pepper, tomato, eggplant and cabbage.

The green peach aphid, (Myzus persicae), is found throughout the world and is viewed as a pest principally due to its ability to transmit plant viruses. The green peach aphid readily infests vegetables and can be transported long distances by wind and storms.

The life cycle varies considerably. Development can be rapid, often 10 to 12 days for a complete generation, and with over 20 annual generations reported in mild climates. In Florida, populations cycle continuously on annual plants.

The rate of reproduction is positively correlated with temperature, with the developmental threshold estimated to be about 4.3º C. As aphid densities increase or plant condition deteriorates, winged forms are produced to aid dispersal. The dispersants typically produce about 20 offspring, which are always wingless. This cycle is repeated throughout the period of favorable weather. In south Florida, this cycle repeats continuously, though the aphid development rate may slow greatly during the winter.

Green peach aphid feeds on hundreds of host plants in over 40 plant families. Vegetables that are reported to support green peach aphid include artichoke, asparagus, bean, beets, broccoli, Brussels sprouts, cabbage, carrot, cauliflower, cantaloupe, celery, corn, cucumber, fennel, kale, kohlrabi, turnip, eggplant, lettuce, mustard, okra, parsley, parsnip, pea, pepper, potato, radish, spinach, squash, tomato, turnip, watercress, and watermelon.

Broadleaf weeds can be very suitable host plants for green peach aphid, thereby creating pest problems in nearby crops. Common and widespread weeds such as field bindweed, lambsquarters, and redroot pigweed are often cited as important aphid hosts.

Green peach aphids can attain very high densities on young plant tissue, causing water stress, wilting, and reduced growth rate of the plant. Prolonged aphid infestation can cause appreciable reduction in yield of root crops and foliage crops. Early season infestation is particularly damaging to potato, even if the aphids are subsequently removed. Contamination of harvestable plant material with aphids, or with aphid honeydew, also causes loss. Blemishes to the plant tissue, usually in the form of yellow spots, may result from aphid feeding.

The major damage caused by green peach aphid is through transmission of plant viruses. This aphid is considered by many to be the most important vector of plant viruses throughout the world. Nymphs and adults are equally capable of virus transmission but adults, by virtue of being so mobile, probably have greater opportunity for transmission. Both persistent viruses, which move through the feeding secretions of the aphid, and non-persistent viruses, which are only temporary contaminants of aphid mouthparts, are effectively transmitted. Kennedy et al. (1962) listed over 100 viruses transmitted by this species.
Because some of the virus diseases transmitted by green peach aphid are persistent viruses, which require considerable time for acquisition and transmission, insecticides can be effective in preventing disease spread in some crops.

Transmission of nonpersistent viruses such as cucumber mosaic virus can sometimes be reduced by coating the foliage with vegetable or mineral oil. Oil is believed to inhibit virus acquisition and transmission by preventing virus attachment to the aphid's mouthparts, or to reduce probing behavior. Oil seems to be most effective when the amount of disease in an area that is available to be transmitted to a crop is at a low level. When disease inoculum or aphid densities are at high levels, oils may be inadequate protection.

Hundreds of natural enemies have been recorded, principally lady beetles (Coccinellidae), flower flies (Syrphidae), lacewings (mainly Chrysopidae), parasitic wasps (Braconidae), and entomopathogenic fungi. Most are general predators, moving freely among green peach aphid, other aphids, and even other insects. There is a strong association between high aphid densities and sudden population decrease following the appearance of lady beetles, wasp parasitoids, or entomopathogenic fungi. Various studies that selectively excluded or killed beneficial organisms have demonstrated the explosive reproductive potential of these aphids in the absence of biological control agents, thus demonstrating their value in reducing damage potential.

Excessive and unnecessary use of insecticides should be avoided. Early in the season, aphid infestations are often spotty, and if such plants or areas are treated in a timely manner, great damage can be prevented later in the season. In some cases, use of insecticides for other, more damaging insects sometimes leads to outbreaks of green peach aphid. Destruction of beneficial insects is thought to explain this phenomenon, but aphid resistance to some types of insecticide may also be involved.

The wide host range of green peach aphid makes crop rotation a difficult tactic to implement successfully. Crops grown down-wind from infested fields are especially susceptible because aphids are weak fliers and tend to be blown about. Infested crops should be destroyed immediately after harvest to prevent excessive dispersal, and it may be possible to destroy weedy hosts if they are present.

Growers on both coasts are reporting light to moderate pepper weevil infestations from scattered locations. In some places there are reports of hotspots with moderate to high numbers being detected in fallen fruit.

Fallen fruit should be checked to determine if weevils are responsible. Infested fruits can be recognized before they fall by the yellow calyx and the presence of oviposition punctures that look like small dimples.

Many growers have indicated disappointing results in obtaining satisfactory control in the field. Spraying needs to commence at the first sign of weevils or with flowering in fields with a history of problems. Once weevils begin to enter fruit control becomes more difficult. Pheromone traps made by Trece are a good way to detect populations early.

Very low numbers of Florida flower thrips (Frankliniella bispinosa) are being found in pepper and eggplant blooms across south Florida. At this time, pressure is light and generally not considered to be a problem.

Silverleaf whitefly populations are beginning to increase seasonally in older fields that are being harvested. Growers are encouraged to begin watching populations more closely as crops begin to mature and as the control from early season applications of Admire and Platinum begins to diminish with time.

Some exceptions have been reported, with some fields around Immokalee experiencing heavy whitefly pressure. In some cases 30 or more adult whiteflies per plant have been noted with lots of eggs, nymphs and pupae as well. Incidence of tomato yellow leaf curl virus has increased dramatically in these fields.
As control with soil-applied nicotinoids diminishes growers should begin to use other products of other chemical classes for control. Choices would include products such as Thiodan, soaps and the insect growth regulators Knack® or Applaud®. Some respondents have reported that several applications of soap may be necessary reduce whitefly numbers to acceptable levels.

Growers are also reminded of the importance of sanitation and rapid destruction of crop residues once harvest is complete.

Most reports indicate that disease incidence and occurrence is generally low across the region.

Bacterial spot infections have been moving with the occurrence of heavy dews and wet foggy nights and mornings. Harvest and cultural operations are also contributing to the spread in some places.

Reports from Palm Beach indicate bacterial spot continues to increase on both pepper and tomato particularly in areas where it was reported earlier. Bacterial spot on pepper has been showing up on middle-aged plants and is still being found on older plants where it had been found before. Most damage is from lesions on leaves with a small amount of leaf drop, but no lesions on fruit have been reported.

The situation is similar in southwest Florida with bacterial infections slowly progressing higher into the canopy of infected pepper and tomato.

Around Immokalee, respondents report some increase in early blight on tomato and potato. Incidence and severity is low.

Early blight is caused by the fungus, *Alternaria solani*. The fungus carries over on tomato and potato volunteers or non-decomposed debris from previously diseased tomato or potato plants. Black nightshade is also reported to be susceptible.

Spores of the fungus are formed when temperatures of 60–90°F (75-85°F is optimum) occur provided wet weather is present. Spores land on susceptible host tissue and germinate when the tissue is wet and penetrate leaf, stem, petiole, or fruit tissue. Within 7 to 14 days, depending on numerous weather variables and host vigor, symptoms will appear and a new generation of spores is formed on this diseased tissue. With each new generation, the epidemic spreads and becomes increasingly difficult to control.

Leaf symptoms begin as pinpoint-size brown to black spots, usually on the older leaves. These lesions expand in size up to one-half inch across, remaining brown, with or without yellowing surrounding the spot. Concentric rings are usually seen within the enlarged spots. Similar spots may occur on stems and if the plant is in the seedling stage, the spot will girdle the stem, often killing the plant. Symptoms in tomato fruit are usually found associated with the stem end and shoulder and may expand in size. Fruit symptoms include a sunken, greenish-brown-black spot with concentric rings.

Control of early blight is best achieved by using several techniques together. Cultural controls will allow the fungicide to do a better job as cultural controls reduce the amount of initial inoculum (spores).

1) Use crop rotation where possible.
2) Use disease-free tomato transplants or disease-free seed pieces for potatoes.
3) Destroy volunteer tomato and potato plants in and around the field.
4) Adjacent fields planted to potatoes or tomatoes the previous season should have been plowed down immediately after harvest.
5) Maintain host vigor via adequate fertilization. Less vigorous plants are more susceptible to early blight than vigorous plants.
6) Begin a fungicide spray program at first sign of disease or before, based on your experience in your particular area.
Maintain spray applications on a 5 to 14 day interval throughout the growing season. Use the shorter intervals if rainfall is frequent or where history of early blight has been severe or when temperatures from 75-85°F prevail. Also, if your spray program started after disease buildup occurred, shorter intervals would be appropriate.

Reports from Palm Beach indicate that target spot has flared up in tomatoes in several locations.

Respondents around Immokalee report some increase in target spot but incidence and severity is mostly low.

Remember that tank-mix sprays of copper fungicides and maneb do not provide acceptable levels of target spot control. In the past, several outbreaks of target spot of tomato have been correlated with frequent use of copper/maneb tank-mixes, primarily for bacterial spot control, to the almost total exclusion of other fungicides. Correct diagnosis of the cause of tomato foliar lesions obviously is needed if proper fungicide choices are to be made.

Scouts from the Palm Beach area report that Sclerotinia has been found infecting pepper plants, which are approaching maturity and has also been found on eggplant and tomato, though to a much lesser extent than on pepper. The infection has been mostly found on upper stems and fruit.

Scattered reports of southern blight mostly on tomato have also been received from around southwest Florida.

The fungus, Sclerotinia sclerotiorum, causes a profusion of diseases on more than 360 different host plant species. There are at least 61 different common names that have been used for different Sclerotinia diseases. Some common names for Sclerotinia diseases of important crops in Florida are white mold (beans), watery soft rot (cabbage), drop (lettuce), stem rot (potato and tomato), and nesting (post-harvest disease of bean).

Sclerotinia diseases have been reported on many crops in the state and have been particularly damaging in bean, lettuce, cabbage, potato, and tomato.

The best indicator of Sclerotinia disease is the presence of small, black sclerotia (resting structures) of the fungus. Sclerotia vary in size and may be spherical, flattened on one or more sides, elongated, and almost any other shape imaginable. They usually are about 3-10 mm long x 3-7 mm wide, with a black outside covering and usually a white interior. Sclerotia form on the surface of certain plant parts as well as inside the stem cavity of tomato and potato. A ring-shaped sclerotium may develop around the stem of tomato fruit infected by Sclerotinia. Sclerotia enable the fungus to survive from season to season and are the source of inoculum to infect crops.

Another common indicator of Sclerotinia diseases is the presence of white, cottony-like mycelium of the fungus when the environmental conditions are favorable, i.e. cool and moist.

Symptoms of Sclerotinia vary for different crop plants. The disease white mold in beans usually does not appear until after blossoming begins. When flower petals senesce, die, and fall from the flower, they may be invaded by the fungus. These fungus-invaded petals serve as an essential, intermediate form of organic matter that allows the fungus to advance into the plant itself. The disease often appears first in leaf axils where flower petals often lodge after falling from the flower. The disease advances into the stem, as water-soaked spots that increase in size, girdle the stem, and kill it above the point of infection. The disease can also enter the bean plant through leaves or pods that lie on the soil surface where sclerotia or infected plant parts act as sources for infection.

In tomato and potato, Sclerotinia diseases begin usually about the time of flowering. Early stages of these diseases are similar to the disease in bean. Infections usually start on the leaf axils or joints of the plant where
fallen flower petals lodge. Spores of the fungus light on these flower petals, germinate, invade the petal, and subsequently advance into the stem. Water-soaked spots are usually the first symptom observed, and these are followed soon by further invasion of the stem, girdling, and death of the upper part of the stem that turns a bleached light gray, causing the stems to resemble bones of animals that have been left in the sun. The fungus can also enter plants at the soil line or at other points where plant parts touch the soil or other plants that are diseased. Plants in large portions of the field may become diseased and die, producing large, more or less circular, areas of dead plants. The hard, black sclerotia of the fungus are often formed inside the stem cavity and tend to assume the shape of the cavity; that is, they are definitely longer in one dimension than in the other. Some may be almost tubular.

Almost all Sclerotinia diseases are field diseases, but when they occur in post-harvest situations they are very damaging. When beans are shipped in containers in which diseased pods are included, a situation called nesting may develop. The fungus grows from the diseased pod to other adjacent pods and produces the cottony-white fungus growth and sclerotia. A mass of diseased pods is created that is stuck together by the fungal growth, resembling a nest (hence, the name "nesting").

Sclerotinia is a fungus that prefers cool, moist weather, causing diseases of great intensity when the temperature ranges from 60 - 70°F (15 - 21°C). High humidity with dew formation supports the spread and increases the intensity of disease.

Small, mushroom-like structures called apothecia develop from sclerotia and bear infectious spores. When the environmental conditions change suddenly, these spores are ejected into the air and carried to healthy plants, where they germinate and produce diseases described here. Spore ejection will occur after sclerotia in soil have been wet or soil moisture is supportive of plant growth (e.g. after several rains or irrigations).

When in the soil, sclerotia may germinate to produce a fungus growth that may infect certain plants directly, without first growing on nonliving organic matter, such as senescent or dead leaves of the host plant, or dead leaves and plant parts of other plants. In certain situations sclerotia may germinate and the resulting fungus growth remains on the dead leaves for a short time, after which the plant stem is invaded.

Four to five weeks of flooding of fields that have a history of Sclerotinia diseases may reduce the numbers of viable sclerotia, thereby reducing the amount of disease in succeeding crops. Recycled irrigation water may move sclerotia to fields where sclerotia are not present.

Methyl bromide fumigation has been effective in reducing disease incidence; loss of methyl bromide may result in greater problems with the disease in the future.

Reports from Palm Beach indicate Phytophthora on pepper has increased some at previous infection sites. There are also some isolated reports of a very few new infections on young plantings.

Reports of powdery mildew on squash continue to come in from both coasts. Powdery mildew is widespread in older cucurbits especially squash. Incidence and severity is generally low to moderate although some severe infections have been noted.

In southwest Florida, downy mildew has been reported on squash.

Bacterial wilt has been diagnosed on squash in the Immokalee area.

Respondents on both coasts continue to report finding tomato yellow leaf curl virus in a few widely scattered tomato plants. Incidence is low although most reports indicate a gradual increase in the number of infected plants as the season progresses. In most cases incidence remains fairly low with only an occasional infected plant every few of acres present. On report out of Immokalee has indicated seeing an explosive increase in the number of infected plants in a field where whitefly numbers have increased greatly.
On the east coast reports indicate that very little TYLCV has been found in Palm Beach County; most of the virus up to this point has been found in Saint Lucie County.

Growers should be prepared to use alternative whitefly control measures including IGR’s as Admire begins to wear off and whitefly populations increase. Growers should rogue out infected plants as identified. It is disturbing to see some fairly large infected plants in fields that have apparently been left in place for several weeks or more. A complete IPM approach including sanitation, eradication (roguing) and chemical control of the whitefly vector is essential in controlling this disease.

Reports indicate that gummy stem blight has really taken off in some fields of melons around Immokalee.

Some growers around Immokalee are seeing fusarium crown rot in older tomato, most of which suffered had some flooding damage or salt injury early in the crop.

Dr Ken Pernezny, Plant Pathologist at the Everglades Research and Education Center also reports some scattered incidence of crown rot on the east coast. Ken indicates that the symptoms of vascular discoloration for crown rot are confined to the lower portions of plants, as opposed to the true Fusarium wilt, where vascular browning can be found fairly high up in the plant.

He also cautions that some observers have confused crown rot problems with pith necrosis, caused by the bacterium Pseudomonas corrugata. Pith necrosis can be distinguished by the characteristic "laddered" appearance in the pith, which is absent for the most part with crown rot.

Diagnostic reports from the UF/IFAS Southwest Florida Research and Education Center in Immokalee indicate seeing some problems with Rhizopus rot and Geotrichium sour rot on tomato in area packinghouses.

Serious losses due to decay occur periodically in tomato shipments during transit or at destination. Florida research has shown that poor dump tank and wash water management practices can be major contributors to decay problems. Bacteria and fungi present on the fruit when harvested can be spread to uncontaminated tomatoes in the water. Organisms that cause bacterial soft rot (Erwinia carotovora), sour rot or watery rot (Geotrichum candidum), Rhizopus rot (Rhizopus stolonifera), and gray mold (Botrytis cinerea) can inoculate the fruit during dump tank and washing procedures. Decay of inoculated fruit after packaging can spread to other fruit during marketing and increase product losses.

The following is a summary of the suggested dump tank management practices to eliminate these problems:

1. Minimize the depth to which tomatoes are submerged when dumped, to less than 24 inches if possible.
2. Maintain a single layer of tomatoes in the dump tank.
3. Minimize the time tomatoes spend in the dump tank, less than two minutes if possible. Never leave tomatoes standing in the water during packinghouse crew breaks. Modify dump tanks to eliminate "dead" spots.
4. Chlorinate dump tank and wash water to maintain a free chlorine concentration of 100 to 150 parts per million (mg/L). Check concentration frequently (at least twice a day) with a DPD test kit. Chlorine may be added to the water as CL 2 gas or the liquid and dry formulations of calcium or sodium hypochlorite labeled for such use.
5. Adjust water pH to about 7.0 (neutral).
6. Maintain the dump tank water temperature 10°F higher than highest fruit pulp temperatures. Water heating requirements can be minimized by keeping harvested fruit in the shade. Temperatures should be monitored with a thermometer.
These management practices represent additive control efforts - not alternative methods. Use of a single control parameter (like chlorination) has not proved to be sufficient to prevent post harvest decay during disease-favorable conditions.

Up Coming Meetings

December 18, 2001 IMPACT General Membership Meeting – 2 PM
Dallas B Townsend Ag Center
1085 Pratt Boulevard
LaBelle, Florida

Guest speaker - Robert Coker Vice President of US Sugar
Contact Henry Spang for more information 863-675-2296

December 20, 2001 Watershed Council of SW Florida – 3 PM
LaBelle City Hall
Hickpochee Ave (Route 80)
LaBelle, Florida

Guest speaker – Ron Hamel – Gulf Coast Citrus Growers Association
Contact Henry Spang for more information 863-675-2296

Orlando, Florida
For more information check out the convention link at United Fresh Fruit and Vegetable Website at: http://www.uffva.org

December 8-12, 2002 Cucurbitaceae 2002
Naples Beach and Golf Club, Naples, Florida
Contact Don Maynard at 941-751-7636 ext 239 or dnma@mail.ifas.ufl.edu.

Vegetable Shipments Up, Prices Down

During October and November, fresh-market vegetable and melon shipment volume increased 4 percent from a year earlier. This was a reflection of the 4-percent increase in fall-season area for harvest and generally favorable weather. Unfortunately, while supplies were rising, demand may have been slowed by the economic downturn. The current recession is the first in a decade and has likely slowed the robust growth experienced in the restaurant industry over the past few years.

The away-from-home market has been a bright spot for vegetable and melon consumption over the past decade. As a result of increased supplies and lackluster demand, shipping-point prices for fresh-market vegetables averaged 24 percent below a year ago during the October to November period. With the possible exception of carrots and cucumbers, shipping-point prices are expected to average below a year earlier for most fresh-market vegetables during the fourth quarter of 2001. Warmer than usual weather in the desert growing areas of California and Arizona may have accelerated growth of some crops and could leave windows of lower supplies and price spikes in December and early January.

Outlook for 2002

By and large, given average weather, fresh vegetable supplies are expected to remain at or above a year earlier through the first quarter of 2002. However, for the year as a whole, fresh area harvested is expected to decline slightly. In planning and planting for each market window, growers and shippers will consider (among a range
of factors) prices received a year ago, costs of production, and the expected strength (or lack thereof) of domestic and export demand. Factors supporting increased area are slightly higher annual prices for 2001 and lower input prices for energy-related items like fertilizer and fuel. Supporting reduced area is uncertain domestic demand due to the slow economy. Also on the negative side is the strong dollar, with its attendant negative impact on export competitiveness.

After a small increase in area during the first quarter, acreage is expected to remain near year-earlier levels in the spring and summer seasons. Given the poor prices received this fall, growers will likely reduce acreage during the fall quarter next year. Assuming average weather in 2002, annual fresh vegetable and melon supplies from domestic sources could be slightly lower for the year.

USDA Vegetables & Melons Update
December 14, 2001

Websites

Walking with Beasts – Prehistoric Animals – check out this Discovery channel website featuring prehistoric mammals and other creatures many of which roamed south Florida as recently as 10,000 years ago! Go to http://dsc.discovery.com/convergence/beasts/beasts.html

REMEMBER....

When the worst thing you could do at school was smoke in the bathrooms, flunk a test or chew gum. And the banquets were in the cafeteria and we danced to a jukebox later, and all the girls wore fluffy pastel gowns and the boys wore suits for the first time and we were allowed to stay out till 12 p.m.

When a '57 Chevy was everyone's dream car. . . to cruise, peel out, lay rubber and watch drag races, and people went steady and girls wore a class ring with an inch of wrapped dental floss or yarn coated with pastel frost nail polish so it would fit her finger.

And no one ever asked where the car keys were 'cause they were always in the car, in the ignition, and the doors were never locked. And you got in big trouble if you accidentally locked the doors at home, since no one ever had a key.

Remember lying on your back on the grass with your friends and saying things like "That cloud looks like a..."

And playing baseball with no adults to help kids with the rules of the game. Back then; baseball was not a psychological group learning experience—it was a game.

Remember when stuff from the store came without safety caps and hermetic seals 'cause no one had yet tried to poison a perfect stranger.

And... with all our progress...don't you just wish...just once...you could slip back in time and savor the slower pace...and share it with the children of the 80's and 90’s.....

So send this on to someone who can still remember Nancy Drew, The Hardy Boys, Laurel & Hardy, Howdy Doody and The Peanut Gallery, The Lone Ranger, The Shadow Knows, Nellie Belle, Roy and Dale, Trigger and Buttermilk as well as the sound of a real mower on Saturday morning, and summers filled with bike rides, playing in cowboy land, baseball games, bowling and visits to the pool...and eating Kool-Aid powder with sugar.
When being sent to the principal's office was nothing compared to the fate that awaited a misbehaving student at home.

Basically, we were in fear for our lives, but it wasn't because of drive by shootings, drugs, gangs, etc. Our parents and grandparents were a much bigger threat! But we all survived because their love was greater than the threat.

Didn't that feel good, just to go back and say, Yeah, I remember that!

And was it really that long ago?

Wishing all of you a blessed and merry Christmas and the very best for the New Year

Contributors include: Joel Allingham/AgriCare, Inc, Karen Armbrester/SWFREC, Jim Connor/SWFREC, Bruce Corbitt/West Coast Tomato Growers, Fred Heald/Farmers Supply, Sarah Hornsby/AgCropCon, Cecil Howell/H&R Farm, Bruce Johnson/General Crop Management, Leon Lucas/Glades Crop Care, Gene McAvoy/Hendry County Extension, Alice McGhee/Thomas Produce, Jimmy Morales/Pro Source One, Tim Nychk/Nychk Bros. Farm, Chuck Obern/C+B Farm, Dr Ken Pernezny/ERECC, Dr. Pam Roberts/SWFREC, Nancy Roe/Farming Systems Research, Wes Roan/6 L's, Kevin Seitzinger/Gargiulo, Jay Shivler/ F& F Farm, Ken Shuler/Palm Beach County Extension, Ben Stanaland/Pacific Tomato Growers, John Stanford/LNA Farm, Mike Stanford/MED Farms, Dr. Phil Stansly/SWFREC, Eugene Tolar/Red Star Farms, Dr.Charlie Vavrina/SWFREC, Donna Verbeck/GulfCoast Ag. and Mark Verbeck/Bayer Crop Protection.

The South Florida Pest and Disease Hotline is compiled by Gene McAvoy and is issued on a biweekly basis by the Hendry County Cooperative Extension Office as a service to the vegetable industry.

Gene McAvoy
Extension Agent II
Vegetable/Ornamental Horticulture 863-674-4092 phone
Hendry County Extension Office 941-860-8811 mobile - Nextel Agnet 28950
PO Box 68 863-674-4097 fax
LaBelle, Florida 33975 gmcavoy@gnv.ifas.ufl.edu
http://www.ifas.ufl.edu/~gmcavoy/index.htm

Ken Shuler
Extension Agent IV
Vegetables
Palm Beach County Extension 561-233-1718 phone
559 N Military Trail kds@gnv.ifas.ufl.edu
West Palm Beach, Florida 33415-1311
Special Thanks to the generous support of our sponsors; who make this publication possible.

Thomas Produce Company
Of South Florida
Grower and Shippers of Quality Vegetables
9905 Clint Moore Road
Boca Raton, Florida 33496

LaBelle Plant World, Inc.
Tommy Smith: President
Scott Smith: Vice President
We Grow Plants for the Pros
LaBelle, Florida Phone 863-675-2020

Gargiulo
Growers Shippers Importers Exporters
David Pensabene: Production Manager
Naples Operations
Phone 941-353-0300 Fax 941-353-3407

AGTROL International
6943 Scarboro Drive
Fort Myers, Florida 33919
Phone 941-437-9970 Fax 941-437-2646

Florida Favorite Fertilizer
787 Overriver Drive
North Fort Myers, Florida 33903
Phone 800-457-0807 Cell 941-707-2272

ProSource One
Immokalee, Florida
Office 941-657-8374 Cell 941-907-6142
E-mail dshelor@ProSourceOne.com

Farmers Supply Inc
710 Broward Street
Immokalee, FL 34142
Phone 941-657-8254 Fax 941-657-2005

Dupont Agricultural Products
5100 South Cleveland Avenue
Fort Myers, Florida 33907
Phone 941-332-1467 Mobile 941-994-8594

Griffin LLC
13171 Lake Meadow Drive
Fort Myers, Florida 33913
Phone 941-274-3102 Fax 941-274-6663

KeyPlex
PO Box 11094
Naples, FL 34101
Phone 941-910-4837 Fax 941-514-0168

AGTROL International
6943 Scarboro Drive
Fort Myers, Florida 33919
Phone 941-437-9970 Fax 941-437-2646

Robert Murray
Fred Heald
Damon Shelor
Ed Early
Mike Raines
Special Thanks to the generous support of our sponsors; who make this publication possible.

Ted and Trudy Winsberg
Green Cay Farms, Inc.
Rt. 1, Box 331B
Boynton Beach, Florida 33437-9727
Phone 561-499-5345

Donna Muir Strickland
Monsanto Crop Protection
PO Box 1723
LaBelle, Florida 33975
Phone 863-675-4250

Glades Crop Care, Inc.
Leaders in Crop Health Management
Charlie Mellinger, Ph.D.
Phone 561-746-3740 Fax 561-746-3775

Mark Verbeck
Bayer Crop Protection
20750 N River Road
Alva, Florida 33920
Phone 941-728-8847 Cell 941-707-0880

Glen Kaufman
Paramount Seeds, Inc.
PO Box 1866
Palm City, Florida 34991
Phone 561-221-0653 Fax 561-221-0102

Walter Preston
Manatee Fruit Company
PO Box 128
Palmetto, Florida 34220-0128
Phone 941-722-3279 Fax 941-729-5151

Robert F. Gregg
Syngenta Crop Protection
11051 Championship Drive
Fort Myers, FL 33913
Office 941-561-8568 Fax 941-561-8569

CERTIS USA
Dr. Adam Muckenfuss 561-781-2233
Sales: Joe Craig 941-965-1145
Ed Dickenson 941-318-9004
Javelin® Agree® Trilogy® Neemix®

AgriEnergy Resources
Sam Hipp
21417 1950 E St., Princeton IL 61356
Phone 954-563-8753 Fax 815-872-1928
http://www.agrienergy.net

Scott Allison
DIAMOND R FERTILIZER
1155 Commerce Drive
LaBelle, Florida 33935
Phone 863-675-3700 Cell 941-851-0613
Special Thanks to the generous support of our sponsors; who make this publication possible.

Matt Arnold
Royster Clark Fertilizer
880 Prairie Mine Road
Mulberry, Florida 33860
Cell 941-842-1536
Office 800-633-6801

Sim Nifong
Dow AgroSciences LLC
292 Lake Pearl Drive
Lake Placid, Florida 33852
Phone 863-699-9150
Cell 941-745-0237

Sarah Hornsby, CCA
Agricultural Crop Consulting, Inc
Scouting: Manatee, Hillsborough, Collier
Office/Fax 941-776-1122
Cell 941-713-6116
Email: AgCropCon@aol.com

Mr and Mrs Raymond Cordell
410 Via Esplande
Punta Gorda, Florida 33950

Bobbit Jenkins
BASF Corporation
11100 Lakeland Circle
Fort Myers, Florida 33913
Office 941-561-2812
Fax 941-561-6985
Mobil 941-707-1603

Florida Seed
Hybrid Vegetable Seed
863-602-2008
Tomato
Pepper
Watermelon

Thad G. Boatwright
Monsanto Crop Protection
1089 Forsythia Lane
West Palm Beach, FL 33415
Office 561-478-4970
Fax 561-478-4970
Cell 561-719-6820

Justin Cain
Chemical Dynamics
PO Box 486
Plant City, Florida 33564-0486
Office 813-752-4950
Fax 863-638-1383
Mobil 863-581-0431

PUT YOUR NAME HERE
If you would like to help sponsor this publication, please contact us, your help is desperately needed!

NOTE: The acknowledgement of sponsorship in no way constitutes or reflects an official endorsement of these businesses or their products or services by either the University of Florida, IFAS, the Florida Cooperative Extension Service, or the Hendry County Extension Office. Sponsors have no control over the content of this publication.