A stalled front over the Florida Straits bought light rain to much of the area over the past few days. The FAWN Weather Station in Immokalee recorded a total of 0.87 inches of precipitation in three separate rainfall events since April 30. Daytime highs have been mostly in the low to mid 80s with nighttime lows were mostly in the mid 50’s to lower 60s.

Warm gusty winds over the past few weeks have continued to buffet crops resulting in reports of plant stress and wind damage including marginal leaf burn and fruit scarring, particularly in sensitive crops like cucurbits. Pan-evaporation measured at the FAWN Weather Station in Immokalee has ranged between 0.165 and 0.211 inches per day over the past two weeks. Several respondents growing exclusively on drip irrigation have indicated difficulty in maintaining adequate soil moisture levels in crops to keep plants from wilting in the hottest part of the day.

Reports of salt-related problems and salt damage in plantings remain widespread, as are reports of rising salinity levels in well water being pumped in coastal areas.

Watermelons harvest is in full swing in SW Florida, while harvesting of most other crops is steady and beginning to decline seasonally. Vegetables available include tomatoes, potatoes, sweet corn, peppers, cabbage, snap beans, squash, cucumbers, eggplant, Chinese cabbage, blueberries watermelons and specialty crops. Quality is mostly good. Some tomato growers are making first and second picks and passing up a third pick due to the market conditions.

The National Weather Service in Miami forecast for the next several days is for partly cloudy breezy conditions with temperatures in the mid 80’s and nighttime lows in the low to mid 60’s. The forecast calls for a chance of scattered afternoon showers today and again on Monday. There is the possibility of hail associated with this afternoon’s showers.

Modified PHASE 2 restrictions for water use remain in effect for South Florida. This includes: Palm Beach, Monroe, Miami-Dade, Broward, Collier, Hendry, Lee, and parts of Glades, Charlotte, and Okeechobee counties.
Immokalee Weather Summary

<table>
<thead>
<tr>
<th>Date</th>
<th>Air Temp °F</th>
<th>Rainfall</th>
<th>Hours Below Certain Temperature (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>40°F</td>
</tr>
<tr>
<td>4/20 – 5/4/01</td>
<td>52.2</td>
<td>88.9</td>
<td>0.87</td>
</tr>
<tr>
<td>4/1 – 30/2001</td>
<td>46.2</td>
<td>91.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

In general, pest and disease pressure remains relatively light. Since many crops are nearing termination, most growers have scaled back spray applications to a maintenance mode.

Pepper weevil populations have reached their typical end of season peak with respondents reporting dramatic increases in several widely scattered locations. A number of respondents have reported observing extensive weevil damage to flower buds and small fruit. Several growers have reported experiencing serious losses from pepper weevils, especially in their hot pepper varieties.

Vydate is the standard control and has given pretty good results even at 2 pts/acre when sprayed weekly in Phil Stansly’s trials at the Southwest Florida Research and Education Center. Despite this, many growers have indicated disappointing results in obtaining satisfactory control in the field. Some growers have terminated older plantings where weevils had become unmanageable. A number of growers have indicated obtaining good results in controlling weevils with either Capture or cryolite. All currently labeled materials are difficult to work into an IPM program once plantings begin to be harvested due to the 7 day PHI in force for all of them.

Sanitation is important. Remove old crops and nightshade (an alternate host) and disk crop residues under as soon as harvesting has terminated. Maintain fields free of volunteer pepper and other potential hosts to reduce survival of pepper weevil populations over the summer.

Spider mites remain widespread on a number of crops including eggplant, tomato, watermelon and other cucurbits. A number of growers report applying repeat applications of miticides aimed at spider mites. Several respondents have indicated that spider mites infestations are most severe where stands of nightshade adjoining plantings. This observation suggests that control of nightshade in unplanted area adjacent to fields will help eliminate this potential source of infestation and may help them reduce possible spider mite problems.

Mites cause damage by sucking cell contents from leaves. On vegetable crops, such as squash, melons, and watermelons, loss of leaves can have a significant impact on yield and result in sun burning. Often leaves, twigs, and fruit are covered with large amounts of webbing. Damage is worse when compounded by water stress.

Spider mites have many natural enemies that often limit populations. Adequate irrigation is important because water-stressed plants are most likely to be damaged. Broad-spectrum insecticide treatments for other pests frequently cause mite outbreaks, so avoid these when possible.

Growers have had good results with back-to-back applications of sulfur and/or Kelthane. Since spider mites reproduce rapidly in hot weather and generation time can be less than a week, it is imperative that subsequent treatments be made every 5 days to target new larvae emerging from eggs.

Whiteflies populations are building up across the area with scattered “hotspots” being reported. Counts as high as 50 per plant have been reported, with eggs and immatures present. Along with increased whitefly populations, we are seeing an increase in the incidence of tomato yellow leaf curl virus.

With the current tomato market, many growers are hesitating to spray. Several reports indicate problems with whitefly on watermelon as well. At this stage of the game, many growers are relying on broad-spectrum
materials including a variety of pyrethroids, such as Asana, Baythroid, Danitol and Warrior as well as some of the organo-phosphates (Monitor) and carbamates such as Thiodan. As we approach the end of the season, effects on beneficials become less of a concern and cost and efficacy assume greater importance.

Increased broadmite activity is being widely reported in pepper and to a lesser extent on eggplant.

Aphids are still around and populations are reported to be up-and-down in cucurbits, peppers and leafy greens.

Worm activity remains fairly light. There have been a few reports problems with southern army worm, loopers and tomato fruit worms from widely scattered locations. In watermelon, there are scattered reports of so-called “rindworm” activity, where armyworms and/or other caterpillars have caused damage by feeding on fruit.

Several producers have noted melonworms and pickleworm activity on cucurbits. Most reports indicate low to moderate pressure, which is being kept easily under control with a variety of lepidoterean specific products. Crops affected include cucumber, squash and melons, with squash growers experiencing the most severe problems.

Although reports indicate that pinworms are increasing in a number of areas especially on field margins, there have been relatively few reports of damage to fruit this season. The tomato pinworm (*Keiferia lycopersicella*) is a small, microlepidopteran moth that is often confused with closely related species with similar habits. Pheromone traps will help give an early warning. When 3 to 5 moths are caught per trap per night, then mating disruption should be initiated. Insecticidal control can be achieved with products such as SpinTor, AgriMec, Proclaim and Avaunt.

Tomato, potato, eggplant, and tropical soda apple (*S. bahamense L*), a solanaceous weed, are the only recorded hosts in Florida. Thus, the summer break is effective in reducing populations to low levels, except possibly where soda apple is prevalent.

Low to moderate diamondback pressure is being reported in brassicas. Some respondents indicate that numbers are increasing.

Low levels of melon thrips (*Thrips palmi*) have been reported from widely scattered locations.

There have been several reports of stinkbug causing problems in tomato. The southern green stinkbug (*Nezara viridula*) belongs to the order Hemiptera or "true bugs". Stinkbugs are in the family Pentatomidae and are recognized by their ovoid shape, five segmented antennae, and their malodorous scent. The southern green stinkbug is a highly polyphagous feeder, attacking many important food crops. This species should not be confused with the green stinkbug (*Nezara hilaris*). The green stinkbug ranges farther north than *Nezara viridula* and the stink gland pore is short and broad in the southern green stinkbug but long and curved in the green stink bug.

The southern green stinkbug can complete its life cycle in 65 to 70 days. It is most prevalent during the periods of October through December and again in March through April. The southern green stinkbug can have up to four generations per year in warm climates.

The eggs are deposited in masses that range from 30 to 130 eggs per mass. The female oviposits on the undersurface of leaves in the upper portions of canopied crops and weeds. The eggs are white to light yellow in color and barrel shaped with tops that are flat with a disc shaped lid. The incubation time for the eggs is five days in the summer and two to three weeks in early spring and late fall.
The first instars aggregate by the empty eggs and do not feed. Feeding begins with the second instar. The second instar has black legs, head, thorax, and antennae. The third and fourth instars differ from the second in size and an overall greenish color becoming apparent.

The adult is shield-shaped with an overall dull green color. A female southern green stinkbug could lay as many as 260 eggs over her life span.

The southern green stinkbug has piercing-sucking mouthparts. The mouth consists of a long beak-like structure called the rostrum. Salivary fluid is pumped down the salivary duct and liquefied food is pumped up the food canal. All plant parts are likely to be fed upon, but growing shoots and developing fruit are preferred. Attached shoots usually wither, or in extreme cases may die. The damage on fruit from the punctures is hard brownish or black spots. These punctures affect the fruit's edible qualities and decidedly lower its market value. Young fruit growth is retarded and it often withers and drops from the plant. In addition to the visual damage caused by southern green stinkbug feeding, the mechanical transmission of tomato bacterial spot may also result. In tomato, adults and nymphs use piercing-sucking mouthparts to cause a lightened, and sometimes depressed, blotchy area under fruit surface.

The Florida Tomato Scouting Guide sets the economic threshold for southern green stinkbug in tomato is one stinkbug per 6 plants.

Biological control of the southern green stinkbug is provided by parasites. In Florida a tachinid fly, Trichopoda pennipes, parasitizes adults and nymphs, and a wasp, Trissolcus basalis, parasitizes eggs.

Stinkbugs have become a greater problem in recent years largely due to the move away from broad-spectrum insecticides to more pest specific bio-rational products.

Gummy stem blight has been reported in watermelon from widely scattered locations. Because other plant disorders can cause exudation of a gummy substance, “gummy-ness” should not be relied upon for diagnosis of gummy stem blight. Anthracnose and inadequate liming can both cause stem lesions and gumming.

A number of respondents have noted a significant increase in the incidence and occurrence of the disease over the last few weeks. Gummy stem blight is more severe under wet conditions since moisture from dew, rain or irrigation is necessary for spore germination. The “overnight” spread of the disease that several respondents have noted is the result of secondary spread, which is more difficult to control than primary spread simply because of increased spore numbers with increased diseased tissue.

Multiple applications of fungicides are necessary to control gummy stem blight. It is important to begin a fungicide program prior to the first sign of gummy stem blight.

Syngenta has indicated that resistant (insensitive) isolates to of Didymella bryoniae, the fungal pathogen that causes gummy stem blight in cucurbits, have been found in Delaware, Maryland, and Georgia. According to Dr. David Langston, Extension Plant Pathologist in Georgia, the resistant (insensitive) isolates to azoxystrobin that have been found so far in Georgia have originated from watermelon and cucumber.

Azoxystrobin affects sensitive isolates at a single site associated with electron transfer in the mitochondria. Such single site-type of compounds are highly likely cause a selection pressure for resistant (insensitive) strains.

Growers are advised to practice resistant management strategies when using azoxystrobin by:

1) Reducing disease inoculum with every non-chemical technique available,
2) Alternating the use of azoxystrobin with broad spectrum fungicides such as mancozeb or chlorothalonil, and
3) Avoiding the introduction of resistant strains onto your farm by producing or purchasing disease free plants. Thanks to Dr Tom Kucharek - Plant Pathologist UF/IFAS

Downy mildew is widespread on cucurbits. Until recently most infections had been largely restricted to cantaloupe and squash, over the past few weeks there have been several reports of downy mildew showing up on watermelon in a number of locations.

The use of Bravo should be avoided on watermelon as it can result in sunburn on the upper surface of fruit. This is especially true under the hot dry conditions that we are presently experiencing. Growers have reported good success in slowing the spread of the disease with Ridomil.

Powdery mildew remains widespread on squash and has also been appearing on watermelon over the past few weeks.

Fusarium wilt is causing problems in some watermelon plantings.

Watermelon mosaic is being reported from a number of widely scattered locations. It’s appearance at this stage of the crop is little cause for concern.

Powdery mildew is present in scattered locations in older pepper fields. Powdery mildew is uncommon on pepper in SW Florida. The disease in pepper is caused by the fungi *Leveillula taurica.*

Leaves with mildew growing on the undersurface may show a patchy yellowish or brownish discoloration on the upper surface. The edges of infected leaves may roll upwards exposing the white, powdery fungal growth. Diseased leaves drop from the plants and leave the fruit exposed to the sun, which may result in sunburning. Powdery mildew can be severe and can cause heavy yield losses.

The fungus survives between crop seasons on other crops and on weed species. The degree of survival depends on environmental conditions. Because of the wide host range of the fungus, it is difficult to control the amount of inoculum that survives from one season to the next. Thus, simple sanitation methods in and around pepper fields may not provide a sufficient reduction in the primary inoculum to provide disease control. Most pepper cultivars do not possess acceptable levels of resistance to powdery mildew.

Fungicides can provide satisfactory control and prevent economic loss if applied during the early stages of the epidemic. Effective control requires spraying with high pressure and high volume for optimum penetration of the crop canopy by the fungicide. Good coverage is necessary for satisfactory control.

Bacterial leaf spot has become widespread on pepper and tomato in several locations following the showers experienced a few weeks ago.

Although most reports indicates that the incidence of TYLCV remains low, several respondents have reported a significant increase in the incidence of tomato yellow leaf curl with some fields exhibiting between 3–5% infection rates. Even higher incidence of the disease has been observed in some fields that have been turned over to pin hookers. Given the potential ability of whiteflies to transmit the disease rapidly under optimal conditions to new plantings, growers should be alert for whitefly buildup and take measures to control them.

Potyvirus is also being reported on tomato from several widely scattered locations. In some cases incidence is over 10%.

Late blight is still widely present on tomato and several growers have reported renewed disease activity over the past few weeks with new infections being noted.
Pepper mottle virus has been detected in several fields in eastern Hendry County. Incidence and severity is moderate to high in some fields. The virus results in unthrifty stunted plants.

Several respondents indicate an increase in foliar disease in tomato, such as bacterial spot, early blight, leaf mold and target spot with the reduced use of fungicides in response to depressed markets.

Pesticide Resistance and Resistance Management

Populations of animals and plants possess the ability to respond to sustained changes or stresses in their environment in ways that enable the continued survival of the species. Such environmental stresses include physical factors (e.g. temperature or humidity), biological factors (e.g. predators, parasites or pathogens) and environmental contaminants. In any population, a small percentage of individuals will be better able to respond to new stresses because of unique traits or characteristics that they possess. Consequently, those individuals will survive and reproduce. This phenomenon is commonly referred to as "survival of the fittest."

Many pest species are exceptionally well equipped to respond to environmental stresses because of their short generation time and large reproductive potential. The use of chemical sprays to control insect and mite pests creates a potent environmental stress. There are now many examples of pests that have responded by developing resistance to one or more pesticides. Pesticide resistant individuals are those that have developed the ability to tolerate doses of a toxicant that would be lethal to the majority of individuals. The mechanisms of resistance can vary according to pest species and/or to the class of chemical to which the pest is exposed. Resistance mechanisms include an increased capacity to detoxify the pesticide once it has entered the pest's body, a decreased sensitivity of the target site that the pesticide acts upon, or a decreased penetration of the pesticide through the cuticle. A single resistance mechanism can sometimes provide defense against different classes of chemicals and this is known as cross-resistance.

When more than one resistance mechanism is expressed in the same individual, this individual is said to show multiple resistance.

Because the traits for resistance are passed from one generation to the next, continued stress from a pesticide may, over time, create resistance in the majority of individuals in a population. From an operational perspective, this process would be expressed as a gradual decrease and eventual loss of effectiveness of a chemical. Resistance to a particular chemical may be stable or unstable. When resistance is stable, the pest population does not revert to a susceptible state even if the use of that chemical is discontinued. When resistance is unstable and use of the chemical is temporarily discontinued, the population will eventually return to a susceptible state, at which time the chemical in question could again be used to manage that pest. However, in this situation, previously resistant populations may eventually show resistance again.

Of the factors that affect the development of resistance, which include aspects of the pest's biology, ecology and genetics, only the operational factors can be effectively manipulated by the grower. The key operational factor that will delay the onset of resistance, and therefore prolong the effective life of a compound, is to limit the number of applications of the same or similar materials to one per season. Rotation of chemicals from different classes within or between years may further reduce the likelihood that resistance to any one material will develop. If resistance to a particular chemical does develop in a pest population, use of that material and materials in the same class, should be discontinued. Natural products such as sulfur, copper, and oil less likely to contribute to the development of resistance.

STUDY FINDS IPM ADVANCES IN FOOD CROPS

A recently completed, data-rich study of pest management trends among growers in Florida’s intensive fruit and vegetable production areas reveals an overall decline in both usage of and reliance on pesticides accompanied by increased acceptance of multi-tactic IPM systems.
The review study, commissioned under a US Department of Agriculture grant was conducted by Glades Crop Care, a long established, Florida Based commercial research and consulting firm and resulted in the publication of an in-depth report, PEST MANAGEMENT SOLUTIONS TO SUSTAIN HIGH VALUE FLORIDA VEGETABLE PRODUCTION. The 186-page study can be downloaded at http://www.gladescropcare.com/PMAP_report.html. The study documents the evolution along the IPM continuum by regional tomato and pepper producers.

Up Coming Meetings:

May 14 –18, 2001
Aquatic Weed Control Short Course - Earn up to 28 CEU’s
Fort Lauderdale Research and Education Center
Fort Lauderdale, Florida
Contact Dr Vernon VanDiver – 954-577-6316

May 15, 2001
Gulf Coast Research and Education Center Vegetable Field Day
Bradenton, FL.
Contact Don Maynard at 941-751-7636 x239 or dnma@mail.ifas.ufl.edu.

May 17, 2001
Spring Vegetable Field Day and Pest and Disease Scouting Workshop
Southwest Florida Research and Education Center
Immokalee, Florida
For information, contact 863-674-4092

June 6, 2001
KaPam/VaPam Certification Course
Southwest Florida Research and Education Center
Immokalee, Florida
For information, contact 863-674-4092

August 3, 2001
Florida Certified Crop Advisor Exam
South Florida Community College
Avon Park, Florida
Call FFAA at (863) 293-4827 for registration information.

Sept. 5, 2001
Florida Tomato Institute
Naples, FL.

Oct. 2-3, 2001
FACTS Meeting
Lakeland, Florida

November 8-9, 2001
17th Annual Tomato Disease Workshop
West Palm Beach, Florida.

Presentations and discussions on the occurrence and management of tomato diseases. Both processing and fresh market tomato problems will be addressed. Colleagues from industry, academia, and extension are welcome.

For additional information visit: http://erec.ifas.ufl.edu/TDW.htm

December 8-12, 2002
Cucurbitaceae 2002
Naples Beach and Golf Club, Naples, Florida
Contact Don Maynard at 941-751-7636 ext 239 or dnma@mail.ifas.ufl.edu.
Your Fall IPM Program Should Start Now!

As we approach the end of the spring season, it is not too early to start thinking about and even implementing your fall season IPM program. With all the advances in pest management, new chemistries and space age spray rigs, it is often easy to overlook some of the basics.

Field sanitation is one of the most important tactics in vegetable pest and disease management. The best thing that growers can do for themselves and their neighbors is to clean up crop residues promptly after harvest. Sanitation is an important IPM technique that should not be over looked as an effective, preventative tool against many vegetable pest and disease problems. Sanitation includes any practice that eradicates or reduces the amount of pathogen inoculum, pests, or weed seeds present and thus helps reduce or eliminate subsequent pest and disease problems.

Prompt crop destruction at the end of the season will immediately end the production of disease inoculum and insects and eliminate the spread of diseases and pests to any other host plants in the vicinity. Downy and powdery mildew on melons can spread via wind from older, diseased plants to plants in surrounding fields that are still maturing. These diseases are obligate parasites. This means that they can only grow and multiply on living host tissue. Some plant pathogens, such as the bacterium that causes bacterial spot of tomato and pepper, are unable to survive for extended periods of time outside of the host tissue. Plowing or disking under infected plant debris helps not only by covering up the inoculum but also speeds up the disintegration of plant tissue and kills the pathogen. Good sanitation will help control a number of important vegetable pathogens.

Destruction of tomato vines will kill off white fly populations and eliminate transmission of the tomato yellow leaf curl virus to subsequent crops and also eliminate inoculum from late blight and other fungal diseases. This is particularly important in the case of TYLCV, as sanitation and whitefly control are the only tools currently available for the management of this disease. A crop-free period is also considered a necessity for the control of a number of other important vegetable pests such as pepper weevil, tomato pinworm, and Thrips palmi and is recommended for management of all vegetable pests.

Weeds and volunteers should also be removed to prevent the survival and over-summering of pathogens that could serve as inoculum reservoirs for the next crop. Techniques such as mowing off pepper should not be relied upon as this often results in re-sprouts, which can harbor pests and disease problems over summer.

The use of cover crops and summer fallowing of fields are also effective tools in reducing weed populations that can cause problems in the subsequent crop. The role of summer fallow in weed management is often overlooked. Summer fallow keeps new weed seeds from being added to the soil seed-bank. It also reduces the increases in asexual propagated plants such as nutsedges. Yellow nutsedge can put out 70 new tubers (nuts) every two months. Keeping the weeds from propagating will reduce the weed problems encountered during the next cropping season and help reduce insects and diseases that may over summer in weedy fields.

Chemical fallowing is a twist on the traditional method of fallowing that depends on disking fields throughout the summer period to reduce weed pressure in subsequent crops. One approach uses Roundup to kill weeds during the crop free period.

Field sanitation will be come an increasingly important tool to growers in face of the impending loss of methyl bromide – whose ease of use and effectiveness in controlling a wide range of problems allowed us to neglect some of these practical common sense pest management techniques.

BENLATE

Dupont has informed its customers that benomyl containing products (Benlate) will no longer be manufactured by DuPont on a GLOBAL basis. No sales of these products will be made after December 31, 2001. This is not
a recall, but rather, it is a voluntary business decision. "A significant element" of this decision is that the company is no longer willing to bear the "high and continuing" costs associated with the legal defense of benomyl in United States. Factors other than good science have influenced past legal decisions in the opinion of DuPont (and me as well as others). In addition, the company must incur other regulatory costs associated to maintain these products in the market place. DuPont believes that their financial resources are better used in other areas of their business.

Benomyl has functioned well and allowed many crops to be grown successfully. Even though resistance to this fungicide has occurred commonly, and such was expected, it still has provided growers with control for several diseases.

Cerexagri (formerly Elf Atochem) sells a similar benzimidazole fungicide called thiophanate-methyl (Topsin M). Its spectrum of activity is similar and pathogens resistant (insensitive) to benomyl are generally (if not always) resistant (insensitive) to thiophanate-methyl. It is not known whether Cerexagri will follow the decision to withdraw Benlate from the market.

ADMINISTRATION PROPOSES ELIMINATION OF CONSERVATION PROGRAMS FOR AGRICULTURE - Loss of Funding Threatens Program Gains of Past Years

"Farmers and ranchers nationwide got a nasty shock in the recent release of the federal budget for 2002: The Bush administration proposes to drastically cut funding for agriculture conservation and farmland protection efforts. Programs to be zeroed out include those that offer farmers incentives to protect water supplies, create wildlife habitat on farmland, and permanently protect their farmland from sprawling development."

Websites:

Greenhouse Vegetable Production - Dr Mary Peet at North Carolina State University has put together this comprehensive website for greenhouse vegetable growers. It has a wealth of information in addition to 12 PowerPoint Presentations on greenhouse production. http://www.ces.ncsu.edu/depts/hort/greenhouse_veg/

Featured Creatures, as well as many other insect sites at the University of Florida, has been moved to a new server with a new URL. Featured Creatures is now located at http://creatures.ifas.ufl.edu/ A listing of many other insect sites, with links to their new locations, is available at http://pests.ifas.ufl.edu/

News From the Farm Bureau - RE: Request for Comments on FQPA Litigation

The Environmental Protection Agency (EPA) entered into an agreement with the Natural Resources Defense Council to "settle" litigation pending on the Food Quality Protection Act. **However**, EPA chose to negotiate with only one of the several parties involved in the litigation. The American Farm Bureau Federation, American Crop Protection Association and American Chemistry Council, as well as several animal rights organizations, are also full parties to the case, but EPA chose to ignore these groups and dealt only with the NRDC in crafting the agreement.

The agreement calls for a "Consent Decree" that would impose a court-enforceable schedule for implementation of parts of the FQPA. Deadlines for the assessment of a number of key crop protection products are part of the decree (see attached list). A rush to meet these deadlines may jeopardize the future availability of product uses and products. For this schedule to take effect, the judge must agree to the Consent Decree. He has not done so. Before making this decision, the judge decided he would consider the comments of the other parties to the case and all affected
parties in general. It is very important that the judge hears directly from the agriculture community and farmers and ranchers specifically on this important matter. I have attached for your convenience a letter drafted by AFBF. In addition, I have also attached talking points on this issue and products that would be impacted, if the judge agreed with the consent decree. Feel free to use or modify this letter as you see fit. Please send the letter to: U.S. Environmental Protection Agency, OPP Public Regulatory Docket (7502C), Docket for Comments on Proposed Consent Decree and Settlement Agreement - FQPA Implementation, Ariel Rios Building, 1200 Pennsylvania Ave., NW, Washington, D.C. 20460. Or e-mail comments to: opp-docket@epa.gov The EPA will forward the letters to the judge. These comments must be submitted by May 14, 2001.

The following points should be included in your letter:

- Your name and a description of your farm (size of farm, commodities grown, etc.).
- If crops on the list (see attached list) are products you use or are used in your state, tell about them and why they are important to your operation/your state and what would happen if you or growers in your state lost access to these products. Customize with specific facts (i.e. crops treated, pests you are concerned with, alternatives or lack there of; for state organizations, include state specific impact, acreage treated, etc.).

Additional points to include in your letter - Concerns with the Consent Decree:

- Express outrage/concern regarding the Consent Decree and the process thus far (i.e. EPA ignoring farmers concerns and moving ahead and signing an agreement with the Natural Resources Defense Council only).
- The Consent Decree establishes arbitrary and unrealistic deadlines for data collection/submission/evaluation, which are inconsistent with the intent of Congress for a science-based implementation of FQPA.
- The Consent Decree sets deadlines BEFORE the already statutorily established deadlines for data submission in many cases, thereby forcing EPA to make unnecessary default assumptions in product risk assessments. This could result in the arbitrary cancellation of products with no documented environmental or health concerns.
- Arbitrary cancellation of products would greatly reduce the number of pest control tools available to growers, as well as the number of public health products available to combat disease-carrying pests.
- The Consent Decree would preempt the EPA’s process for developing a Cumulative Risk Assessment model, an area of science where further study and research is still needed. The Consent Decree would give EPA, registrants, and the scientific community grossly inadequate time to develop a science-based Cumulative Risk Assessment model.
- While we embrace the intent of FQPA, including increased protections for children, and supported it’s passage, the Consent Decree would force premature restrictions on products without sufficient alternatives being available. This could have a devastating impact on agriculture, especially minor and specialty crops. The available alternatives may prove inadequate in controlling pests, and managing resistance development.
- Forcing the EPA to make hasty decisions, in the absence of scientific evidence, will jeopardize products that might otherwise be safe. This will result in a negative and unfounded perception of various pest control products and seriously affect their marketability.
Crop Protection Product List

The Consent Decree would impose a court-enforceable schedule for crop protection product safety reviews. In many cases key data will not be available before EPA will be required to make decisions on products, which may result in the use of default assumptions and the loss of products or uses. The following products have been specifically singled out in the Consent Decree:

- **Phosmet** (Imidan) – 23 crop uses, including: alfalfa, nuts, fruits, corn, cotton, vegetables.
- **Azinphos-methyl** (Guthion) – 50 crop uses including: alfalfa, nuts, fruits, vegetables, barley, cotton, sugarcane, wheat, soybeans, rye, other
- **Propargite** (Omite) – Uses include: grapes, nectarines, post harvest on cherries, other
- **Chlorpyrifos** (Lorsban/Dursban) – Over 50 crop uses including: alfalfa, nuts, fruits, vegetables, figs, mint, sugarcane, wheat, corn, cotton, soybeans, other
- **Atrazine** (Atrazine) – Herbicide, atrazine is an ingredient in more than 40 pre-mixes, including: Bicep II, Marksmen, Reason, Harness Xtra, Guardsman, Buctril + Atrazine, Surpass 100, Bullet, Basis Gold.
- **Carbaryl** (Sevin) – Uses include: alfalfa, oats, barley, pastures, canola, potato, clover, rangelands, corn (field, sweet), rye, forage, grasses, wheat, non-crop areas
- **Benomyl** (Benlate) – Uses include: fruits, vegetables, conifers, nuts, melons, rice, soybeans, wheat, and various seed treatments (this product is being phased out).
- **Endosulfan** (Thiodan, Endocide, Beosit, Cyclodan, Malix, Thimul, Thifor) – Uses include: tea, fruits, vegetables and grains, other
- **Lindane** (Lindane/Isotoxo) – Uses include: fruits, vegetables and for use on livestock, pets, and agricultural premises, other
- **Diazinon** (Diazinon) – Over 60 crop uses including: nuts, fruits, vegetables, cotton, other
- **Metam Sodium** (Vapam) – Uses include: melons, peppers, tomatoes, potatoes, strawberries, nurseries, ornamentals, cut flowers, container plants, forest tree seedlings, citrus, grapes, almonds, artichokes, asparagus, carrots, other

The Consent Decree also specifies that EPA move forward on conducting a cumulative risk assessment on all OPs by the end of this year. To date, EPA does not have sufficient data or information on how to conduct such an assessment. Therefore, the potential loss of uses and products is high. All OPs are potentially affected.

This includes: Acephate (Orthene), Azinphos-methyl (Guthion), Bensulide (Prefar), Chloroethoxyfos (Fortress), Chlorpyrifos (Lorsban/Dursban), Chlorpyrifos-methyl (Reldan), Comaphos (Co-Ral), Diazinon (Diazinon), Dichlorvos (DDVP), Dicrotophos (Bidrin), Dimethoate (Dimethoate or Cygon), Disulfoton (Terractor or Disyston), Ethion (Ethion), Ethoprop (Chipco or Mocap), Ethyl parathion, Fenamiphos (Nemacur), Fenthion (Tiguvon), Fonofos, Isazophos, Isofenphos, Malathion (Malathion or Fyfanon), Methamidophos (Monitor), Methidathion (Supracide), Methyl Parathion (Penncap-M), Naled (Dibrom or Ordo), Oxydemeton methyl (Metasystox-R), Phorate (Thimet), Phosmet (Imidan), Phostebupirim (Aztec), Pirimiphos methyl (Exceed), Profenofos (Curacron), Sulfofene (Plantfume), Temephos (Abate), Terbufos (Counter), Tetrachlorvinphos (Raban), Tribufos (DEF), Trichlorfon (Neguvon),

Send your letters to the following address:

U.S. Environmental Protection Agency
OPP Public Regulatory Docket (7502C)
Ariel Rios Building
1200 Pennsylvania Ave., NW
Washington, D.C. 20460

E-mail comments to: opp-docket@epa.gov
Sample Letter:

RE: Docket for Comments on Proposed Consent Decree and Settlement Agreement -- FQPA Implementation

To Whom it May Concern:

On January 19, 2001, the Environmental Protection Agency (EPA) entered into an agreement with the Natural Resources Defense Council to “settle” litigation pending on the Food Quality Protection Act. However, EPA chose to negotiate with only one of the several parties involved, ignoring farmers’ interests!

It is my understanding that the agreement calls for a “consent decree” that would impose deadlines for implementation of parts of the FQPA, and could force actions against some of key crop protection products that I use on my farm. This decision seems to be contradictory to the risk assessment process EPA developed under the Tolerance Reassessment Advisory Committee (TRAC) process, what is now known as the Committee to Advise on Reassessment and Transition (CARAT).

This process, developed with input from farmers, allows for timely risk assessments to take place, while at the same time allowing for flexibility so as to achieve a scientifically fair review of a product. The consent decree, in contrast, establishes arbitrary and unrealistic deadlines for data collection, submission and evaluation, which are inconsistent with the intent of Congress for a science-based implementation of FQPA. This could result in the arbitrary cancellation of products or specific crop uses with no documented environmental or health concerns.

As a farmer who uses these products, this troubles me. The consent decree would force premature restrictions on products without sufficient alternatives being available -- alternatives that may not be affordable, prove adequate in controlling pests, or in managing resistance development. This could have a devastating impact on my farm, and many others.

Agriculture’s interests were not represented in the settlement discussions, despite being interveners. Therefore, I ask the court to oppose the agreement. I believe this settlement will force the agency to make hasty decisions, in the absence of scientific evidence that will jeopardize products that might otherwise be safe. Products I have used safely on my farm for years.

Sincerely,

Quotable Quotes:

When the well's dry, we know the worth of water." - Benjamin Franklin

A banker is a fellow who lends you his umbrella when the sun is shining, but wants it back the minute it begins to rain. - Mark Twain

A lie can travel halfway around the world while the truth is putting on its shoes. - Mark Twain

Be careful about reading health books. You may die of a misprint. -- Mark Twain

As you journey through life take a minute every now and then to give a thought for the other fellow. He could be plotting something. -- Hagar the Horrible
On the Lighter Side

YOU KNOW YOU'RE A REDNECK WHEN

You take your dog for a walk and you both use the same tree.
You can entertain yourself for more than an hour with a flyswatter.
Your property has been mistaken for a recycling center.
Your boat has not left the driveway in 15 years.
You come back from the dump with more than you took.
Your wife can climb a tree faster than your cat.
You think a subdivision is part of a math problem.
You've bathed with flea and tick soap.
You've been involved in a custody fight over a hunting dog.
Your kids take a siphon hose to show and tell.
You think a hot tub is a stolen indoor plumbing fixture.
You have a rag for a gas cap.
Your house doesn't have curtains but your truck does.
You wonder how service stations keep their restrooms so clean.
You consider your license plate personalized because your father made it.
Your lifetime goal is to own a fireworks stand.
You have a complete set of salad bowls and they all say Cool Whip.
Your working TV sits on top of your non-working TV.
You thought the Unabomber was a wrestler.
You've ever used your ironing board as a buffet table.
You've used a toilet brush as a back scratcher.
You missed 5th grade graduation because you had jury duty.
A tornado hits your neighborhood and does $100,000 worth of improvement.

Contributors include: Karen Armbrester/SWFREC, Jim Connor/SWFREC, Bruce Corbitt/West Coast Tomato Growers, Fred Heald/Farmers Supply, Sarah Hornsby/AgCropCon, Cecil Howell/H&R Farm, Leon Lucas/ Glades Crop Care, Gene McAvoy/Hendry County Extension, Alice McGhee/Thomas Produce, Tim Nyckh/Nyckh Bros. Farm, Chuck 0bern/C+B Farm, Dr. Pam Roberts/SWFREC, Wes Roan/6 L's, Kevin Seitzinger/Gargiulo, Jay Shivler/ F& F Farm, Ben Stanaland/Pacific Tomato Growers, John Stanford/LNA Farm, Mike Stanford/MED Farms, Dr. Phil Stansly/SWFREC, Eugene Tolar/Red Star Farms, and Dr. Charlie Vavrina/SWFREC, Donna Verbeck/GulfCoast Ag.

The SW Florida Pest and Disease Hotline is compiled by Gene McAvoy and is issued on a biweekly basis by the Hendry County Cooperative Extension Office as a service to the vegetable industry.

Gene McAvoy
Extension Agent II
Vegetable/Ornamental Horticulture 863-674-4092 phone
Hendry County Extension Office 941-860-8811 mobile - Agnet 28950
PO Box 68 863-674-4097 fax
LaBelle, FL 33975 gmcavoy@gv.ifas.ufl.edu

http://www.ifas.ufl.edu/~gmcavoy/index.htm
Special Thanks to the generous support of our sponsors; who make this publication possible.

Thomas Produce Company
Of South Florida
Grower and Shippers of Quality Vegetables
9905 Clint Moore Road
Boca Raton, Florida 33496

Rohm and Haas Company
7100 Twin Eagle Lane
Fort Myers, Florida 33912
Phone 941-561-8733 Mobile 941-707-2272

Thomas Produce Company
Of South Florida
Grower and Shippers of Quality Vegetables
9905 Clint Moore Road
Boca Raton, Florida 33496

Robert Murray

LaBelle Plant World, Inc.
Tommy Smith: President
Scott Smith: Vice President
We Grow Plants for the Pros
LaBelle, Florida Phone 863-675-2020

Farmers Supply Inc
710 Broward Street
Immokalee, FL 34142
Phone 941-657-8254 Fax 941-657-2005

LaBelle Plant World, Inc.
Tommy Smith: President
Scott Smith: Vice President
We Grow Plants for the Pros
LaBelle, Florida Phone 863-675-2020

Robert Murray

Gargiulo
Growers Shippers Importers Exporters
David Pensabene: Production Manager
Naples Operations
Phone 941-353-0300 Fax 941-353-3407

Asgrow Vegetable Seeds
1923 Indian Creek Drive
Fort Myers, Florida 33917
Phone 941-370-5893 Fax 941-543-7003

Gargiulo
Growers Shippers Importers Exporters
David Pensabene: Production Manager
Naples Operations
Phone 941-353-0300 Fax 941-353-3407

Bob Conrad

AGTROL International
6943 Scarboro Drive
Fort Myers, Florida 33919
Phone 941-437-9970 Fax 941-437-2646

DuPont Agricultural Products
5100 South Cleveland Avenue
Fort Myers, Florida 33907
Phone 941-332-1467 Mobile 941-994-8594

AGTROL International
6943 Scarboro Drive
Fort Myers, Florida 33919
Phone 941-437-9970 Fax 941-437-2646

Ed Early

Griffin LLC
13171 Lake Meadow Drive
Fort Myers, Florida 33913
Phone 941-274-3102 Fax 941-274-6663

Shelby F. Hinrichs
Special Thanks to the generous support of our sponsors; who make this publication possible.

Ted and Trudy Winsberg
Green Cay Farms, Inc.
Rt. 1, Box 331B
Boynton Beach, Florida 33437-9727
Phone 561-499-5345

Donna Muir Strickland
Monsanto Crop Protection
PO Box 1723
LaBelle, Florida 33975
Phone 863-673-0182 Agnet 6808

Glades Crop Care, Inc.
Leaders in Crop Health Management
Charlie Mellinger, Ph.D.
Phone 561-746-3740 Fax 561-746-3775

Mark Verbeck
Bayer Crop Protection
20750 N River Road
Alva, Florida 33920
Phone 941-728-8847 Cell 941-707-0880

Glen Kaufman
Paramount Seeds, Inc.
PO Box 1866
Palm City, Florida 34991
Phone 561-221-0653 Fax 561-221-0102

Walter Preston
Manatee Fruit Company
PO Box 128
Palmetto, Florida 34220-0128
Phone 941-722-3279 Fax 941-729-5151

Robert F. Gregg
Syngenta Crop Protection
11051 Championship Drive
Fort Myers, FL 33913
Office 941-561-8568 Fax 941-561-8569

Certis
Dr. Adam Muckenfuss 561-781-2233
Sales: Joe Craig 941-965-1145
Ed Dickenson 941-318-9004
Javelin® Agree® Trilogy® Neemix®

AgriEnergy Resources
Sam Hipp
21417 1950 E St., Princeton IL 61356
Phone 954-563-8753 Fax 815-872-1928
http://www.agrienergy.net

Scott Allison
DIAMOND R FERTILIZER
1155 Commerce Drive
LaBelle, Florida 33935
Phone 941-675-3700 Cell 941-851-0613
Special Thanks to the generous support of our sponsors; who make this publication possible.

Matt Arnold
Royster Clark Fertilizer
880 Prairie Mine Road
Mulberry, Florida 33860
Cell 941-842-1536 Office 800-633-6801

Sim Nifong
Dow AgroSciences LLC
292 Lake Pearl Drive
Lake Placid, Florida 33852
Phone 941-699-9150 Cell 941-745-0237

Sarah Hornsby, CCA
Agricultural Crop Consulting, Inc
Scouting: Manatee, Hillsborough, Collier
Office/Fax 941-776-1122
Cell 941-713-6116
Email: AgCropCon@aol.com

Mr and Mrs Raymond Cordell
410 Via Esplande
Punta Gorda, Florida 33950

Colony Helicopters
Aquatic Weed Spraying
Citrus Spraying
Frost Protection
Offices in LaBelle and Ft Pierce
1-800-741-8944

Capital Agricultural Property Services, Inc.
201 South Orange Avenue, Suite 790
Orlando, Florida 32801
407-649-4878

Thad G. Boatwright
Monsanto Crop Protection
1089 Forsytia Lane
West Palm Beach, FL 33415
Office 561-478-4970 Fax 561-478-4970
Cell 561-719-6820

Justin Cain
Chemical Dynamics
PO Box 486
Plant City, Florida 33564-0486
Office 813-752-4950 Fax 863-638-1383
Mobil 863-581-0431

Bobbit Jenkins
BASF Corporation
11100 Lakeland Circle
Fort Myers, Florida 33913
Office 941-561-2812 Fax 941-561-6985
Mobil 941-707-1603

PUT YOUR NAME HERE
If you would like to help sponsor this publication, please contact us, your help is desperately needed!

NOTE: The acknowledgement of sponsorship in no way constitutes or reflects an official endorsement of these businesses or their products or services by either the University of Florida, IFAS, the Florida Cooperative Extension Service, or the Hendry County Extension Office. Sponsors have no control over the content of this publication.